Equations of Langmuir Turbulence and Zakharov Equations: Smoothness and Approximation
-
摘要: 考虑了一类带参数H,用于描述Langmuir扰动的方程.研究了当参数H趋于0时,这一类扰动方程的渐近行为.通过建立一个弱收敛结果和一个强收敛结果,得到了这类扰动方程初值问题的解(EH ,nH )收敛到Zakharov方程初值问题的解(E,n)的结论.
-
关键词:
- Zakharov方程 /
- Langmuir扰动方程 /
- 近似
Abstract: The authors considered a family of systems parameterized by H,which described Langmuir’s turbulence, and studied the asymptotic behavior of the solutions (EH , nH ) when H went to zero. They state convergence results of (EH , nH ) to the couple (E,n) which is the solution of the Zakharov equations.-
Key words:
- Zakharov equations /
- equations of Langmuir turbulence /
- approximation
-
[1] Zakharov V E. Collapse of Langmuir waves[J]. Sov Phys JETP, 1972, 35: 908-914. [2] Pecher H. An improved local well-posedness result for the one-dimensional Zakharov system[J]. J Math Anal Appl, 2008, 342(2): 1440-1454. [3] Guo B, Zhang J, Pu X. On the existence and uniqueness of smooth solution for a generalized Zakharov equation[J]. J Math Anal Appl, 2010, 365(1): 238-253. [4] Linares F, Matheus C. Well posedness for the 1D Zakharov-Rubenchik system[J]. Advances in Differential Equations, 2009, 14(3/4): 261-288. [5] Masmoudi N, Nakanishi K. Energy convergence for singular limits of Zakharov type systems[J]. Invent Math, 2008, 172(3): 535-583. [6] Garcia L G, Haas F, de Oliveira L P L, Goedert J. Modified Zakharov equations for plasmas with a quantum correction[J]. Phys Plasmas, 2005, 12(1): 1-8. [7] Lions J L. Quelques Mèthodes de Résolution des Problèmes aux Limites Non Linéaires[M]. Paris: Dunod Gauthier Villard, 1969:12, 53. [8] Added H, Added S. Existence globale d’une solution reguliére des equations de la turbulence de Langmuir en dimension 2[J]. C R A S, Paris, 1984, 299(12): 551-554. [9] Added H S. Equations of Langmuir turbulence and nonlinear Schrdinger equation: smoothness and approximation[J]. J Functional Analysis, 1988, 79(1): 183-210. -
计量
- 文章访问数: 2172
- HTML全文浏览量: 242
- PDF下载量: 897
- 被引次数: 0