留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对边简支矩形薄板方程的算子半群方法

刘杰 黄俊杰 阿拉坦仓

刘杰, 黄俊杰, 阿拉坦仓. 对边简支矩形薄板方程的算子半群方法[J]. 应用数学和力学, 2015, 36(7): 733-743. doi: 10.3879/j.issn.1000-0887.2015.07.006
引用本文: 刘杰, 黄俊杰, 阿拉坦仓. 对边简支矩形薄板方程的算子半群方法[J]. 应用数学和力学, 2015, 36(7): 733-743. doi: 10.3879/j.issn.1000-0887.2015.07.006
LIU Jie, HUANG Jun-jie, Alatancang. An Operator Semigroup Method for Rectangular Plates With 2 Opposite Sides Simply Supported[J]. Applied Mathematics and Mechanics, 2015, 36(7): 733-743. doi: 10.3879/j.issn.1000-0887.2015.07.006
Citation: LIU Jie, HUANG Jun-jie, Alatancang. An Operator Semigroup Method for Rectangular Plates With 2 Opposite Sides Simply Supported[J]. Applied Mathematics and Mechanics, 2015, 36(7): 733-743. doi: 10.3879/j.issn.1000-0887.2015.07.006

对边简支矩形薄板方程的算子半群方法

doi: 10.3879/j.issn.1000-0887.2015.07.006
基金项目: 国家自然科学基金(11305097);陕西省教育厅科研计划项目(2013JK0616)
详细信息
    作者简介:

    刘杰(1980—),男,蒙古族,讲师,博士生(E-mail: ljdzxx@sina.cn);黄俊杰(1979—),男,蒙古族,教授,博士生导师(通讯作者. E-mail: huangjunjie@imu.edu.cn);阿拉坦仓(1963—),男,蒙古族,教授,博士生导师.

  • 中图分类号: O175.3

An Operator Semigroup Method for Rectangular Plates With 2 Opposite Sides Simply Supported

Funds: The National Natural Science Foundation of China(11305097)
  • 摘要: 考虑弹性理论中对边简支矩形薄板方程,用算子半群方法求解问题.首先,将方程转换成抽象Cauchy问题.其次,构造空间框架并证明对应的算子矩阵生成压缩半群.最后,经Fourier变换,采用一致连续半群做逼近,进而给出对边简支矩形薄板方程的解析解.该方法自然蕴含着解的存在唯一性.
  • [1] Sokolnikoff I S. Mathematical Theory of Elasticity [M]. 2nd ed. New York: McGraw-Hill Book Co Inc, 1956.
    [2] 钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.(ZHONG Wan-xie. A New Systematic Methodology for Theory of Elasticity [M]. Dalian: Dalian University of Technology Press, 1995.(in Chinese))
    [3] 王华, 阿拉坦仓, 黄俊杰. 弹性理论中上三角无穷维Hamilton算子根向量组的完备性[J]. 应用数学和力学, 2012,33(3): 366-378.(WANG Hua, Alatancang, HUANG Jun-jie. Completeness of the system of root vectors of upper triangular infinite-dimensional Hamiltonian operators appearing in elasticity theory[J]. Applied Mathematics and Mechanics,2012,〖STHZ〗 33(3): 366-378.(in Chinese))
    [4] LI Rui, ZHONG Yang, LI Ming. Analytic bending solutions of free rectangular thin plates resting on elastic foundations by a new symplectic superposition method[J]. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences,2013,469(2153): 20120681.
    [5] Lim C W, Cui S, Yao W. On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported[J]. International Journal of Solids and Structures,2007,44(16): 5396-5411.
    [6] Eburilitu, Alatancang. Symplectic eigenfunction expansion approach for a class of rectangular plates[J]. Mathematica Applicata,2013,26(1): 80-88.
    [7] Lim C, Xu X. Symplectic elasticity: theory and applications[J]. Applied Mechanics Reviews,2010,63(5): 050802.
    [8] ZHANG Guo-ting, HUANG Jun-jie, Alatancang. Eigen-vector expansion theorem of a class of operator matrices appearing in elasticity and applications[J]. Acta Physica Sinica,2012,〖STHZ〗 61(14): 140205.
    [9] 侯国林, 阿拉坦仓. 对边简支的矩形平面弹性问题的辛本征展开定理[J]. 应用数学和力学, 2010,31(10): 1181-1190.(HOU Guo-lin, Alatancang. Symplectic eigenfunction expansion theorem for the rectangular plane elasticity problems with two opposite simply supported[J]. Applied Mathematics and Mechanics,2010,31(10): 1181-1190.(in Chinese))
    [10] HUANG Jun-jie, Alatancang, WANG Hua. Completeness of the system of eigenvectors of off-diagonal operator matrices and its applications in elasticity theory[J]. Chinese Physics B,2010,19(12): 120201-1-120201-9.
    [11] Goldstein J A. Semigroups of Linear Operators and Applications [M]. New York: Oxford University Press, 1985.
    [12] Engel K J, Nagel R. One Parameter Semigroups for Linear Evolution Equations [M]. Graduate Texts in Mathematics 194. New York: Springer-Verlag, 2000.
    [13] Webster J T. Weak and strong solutions of a nonlinear subsonic flow-structure interaction: semigroup approach[J].Nonlinear Analysis,2011,74(10): 3123-3136.
    [14] 阿拉坦仓, 张鸿庆, 钟万勰. 矩阵多元多项式的带余除法及其应用[J]. 应用数学和力学, 2000,21(7): 661-668.(Alatancang, ZHANG Hong-qing, ZHONG Wan-xie. Pseudo-division algorithm for matrix multivariable polynomial and its application[J]. Applied Mathematics and Mechanics,2000,21(7): 661-668.(in Chinese))
    [15] Kato T. Perturbation Theory for Linear Operators [M]. Classics in Mathematics. Berlin: Springer-Verlag, 1995.(reprint of the 1980 edition)
  • 加载中
计量
  • 文章访问数:  1186
  • HTML全文浏览量:  156
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-30
  • 修回日期:  2015-05-09
  • 刊出日期:  2015-07-15

目录

    /

    返回文章
    返回