留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有混合时滞的脉冲复值神经网络的全局μ-稳定性

闫欢 赵振江 宋乾坤

闫欢, 赵振江, 宋乾坤. 具有混合时滞的脉冲复值神经网络的全局μ-稳定性[J]. 应用数学和力学, 2015, 36(7): 756-767. doi: 10.3879/j.issn.1000-0887.2015.07.008
引用本文: 闫欢, 赵振江, 宋乾坤. 具有混合时滞的脉冲复值神经网络的全局μ-稳定性[J]. 应用数学和力学, 2015, 36(7): 756-767. doi: 10.3879/j.issn.1000-0887.2015.07.008
YAN Huan, ZHAO Zhen-jiang, SONG Qian-kun. Global μ-Stability of Impulsive Complex-Valued Neural Networks With Mixed Time-Varying Delays[J]. Applied Mathematics and Mechanics, 2015, 36(7): 756-767. doi: 10.3879/j.issn.1000-0887.2015.07.008
Citation: YAN Huan, ZHAO Zhen-jiang, SONG Qian-kun. Global μ-Stability of Impulsive Complex-Valued Neural Networks With Mixed Time-Varying Delays[J]. Applied Mathematics and Mechanics, 2015, 36(7): 756-767. doi: 10.3879/j.issn.1000-0887.2015.07.008

具有混合时滞的脉冲复值神经网络的全局μ-稳定性

doi: 10.3879/j.issn.1000-0887.2015.07.008
基金项目: 国家自然科学基金(61273021; 61473332); 重庆市研究生科研创新项目(CYS14163)
详细信息
    作者简介:

    闫欢(1991—),女,重庆万州人,硕士生(E-mail: huanyancquc@163.com);赵振江(1961—),男,新疆喀什人,教授,硕士(E-mail: zhaozjcn@163.com);宋乾坤(1963—),男,四川岳池人,教授,博士(通讯作者. E-mail: qiankunsong@163.com).

  • 中图分类号: O175.13

Global μ-Stability of Impulsive Complex-Valued Neural Networks With Mixed Time-Varying Delays

Funds: The National Natural Science Foundation of China(61273021; 61473332)
  • 摘要: 研究了具有离散变化时滞和无界分布时滞的脉冲复值神经网络的稳定性,在所研究的神经网络中,活动函数仅仅要求满足Lipschitz条件.运用同胚映射原理,证明了具有混合时滞的脉冲复值神经网络平衡点的存在性和唯一性.通过构造Lyapunov-Krasovskii泛函,使用自由权矩阵方法和不等式技巧,获得了网络平衡点的全局μ-稳定性的充分性判据.数值仿真实例验证了结果的有效性.
  • [1] 廖晓昕. Hopfield型神经网络的稳定性[J]. 中国科学(A辑), 1993,23(10): 1025-1035.(LIAO Xiao-xin. Stability of Hopfield neural networks[J]. Scientia Sinica Mathematica,1993,23(10): 1025-1035.(in Chinese))
    [2] 曹进德. 时滞细胞神经网络指数稳定性与周期解[J]. 中国科学(E辑), 2000,30(3): 328-336.(CAO Jin-de. Exponential stability and periodic solutions of delayed celluar neural networks[J]. Scientia Sinica Technologica,2000,30(3): 328-336(in Chinese))
    [3] SONG Qian-kun. Exponential stability of recurrent neural networks with both time-varying delays and general activation functions via LMI approach[J]. Neurocomputing,2008,71(13/15): 2823-2830.
    [4] LIU Yu-rong, WANG Zi-dong, LIU Xiao-hui. Asymptotic stability for neural networks with mixed time delays: the discrete-time case[J]. Neural Networks,2009,22(1): 67-74.
    [5] Gopalsamy K. Stability of artificial neural networks with impulses[J]. Applied Mathematics and Computation,2004,154(3): 783-813.
    [6] XU Dao-yi, YANG Zhi-chun. Impulsive delay differential inequality and stability of neural networks[J]. Journal of Mathematical Analysis and Applications,2005,305(1): 107-120.
    [7] SONG Qian-kun, ZHANG Ji-ye. Global exponential stability of impulsive Cohen-Grossberg neural network with time-varying delays[J]. Nonlinear Analysis: Real World Applications,2008,9(2): 500-510.
    [8] Rakkiyappan R, Balasubramaniam P, CAO Jin-de. Global exponential stability results for neutral-type impulsive neural networks[J]. Nonlinear Analysis: Real World Applications,2010,11(1): 122-130.
    [9] Tojtovska B, Jankovic S. General decay stability analysis of impulsive neural networks with mixed time delays[J]. Neurocomputing,2014,142: 438-446.
    [10] Hirose A. Complex-Valued Neural Networks: Theories and Applications[M]. Singapore: World Scientific, 2003.
    [11] Lee D L. Relaxation of the stability condition of the complex-valued neural networks[J]. IEEE Transactions on Neural Networks,2001,12(5): 1260-1262.
    [12] Rao V S H, Murthy G R S. Global dynamics of a class of complex valued neural networks[J]. International Journal of Neural Systems,2008,18(2): 165-171.
    [13] ZHOU Wei, Zurada J M. Discrete-time recurrent neural networks with complex-valued linear threshold neurons[J]. IEEE Transactions on Circuits and Systems II: Express Briefs,2009,56(8): 669-673.
    [14] DUAN Cheng-jun, SONG Qian-kun. Boundedness and stability for discrete-time delayed neural network with complex-valued linear threshold neurons[J]. Discrete Dynamics in Nature and Society,2010,2010: 368379. doi: 10.1155/2010/368379.
    [15] HU Jin, WANG Jun. Global stability of complex-valued recurrent neural networks with time-delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2012,23(6): 853-865.
    [16] ZHOU Bo, SONG Qian-kun. Boundedness and complete stability of complex-valued neural networks with time delay[J]. IEEE Transactions on Neural Networks and Learning Systems,2013,24(8): 1227-1238.
    [17] Rakkiyappan R, Velmurugan G, LI Xiao-di. Complete stability analysis of complex-valued neural networks with time delays and impulses[J]. Neural Processing Letters,2015,41(3): 435-468. doi: 10.1007/s11063-014-9349-6.
    [18] CHEN Xiao-feng, SONG Qian-kun, LIU Xiao-hui, ZHAO Zhen-jiang. Global μ-stability of complex-valued neural networks with unbounded time-varying delays[J]. Abstract and Applied Analysis Volume,2014,2014. doi: 10.1155/2014/263847.
    [19] CHEN Xiao-feng, SONG Qian-kun, LUI Yu-rong, ZHAO Zhen-jiang. Global μ-stability of impulsive complex-valued neural networks with leakage delay and mixed delays[J]. Abstract and Applied Analysis Volume,2014,2014. doi: 10.1155/2014/397532.
    [20] CHEN Tian-ping, WANG Li-li. Global μ-stability of delayed neural networks with unbounded time varying delays[J]. IEEE Transactions on Neural Networks,2007,18(6): 1836-1840.
  • 加载中
计量
  • 文章访问数:  1170
  • HTML全文浏览量:  226
  • PDF下载量:  925
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-30
  • 修回日期:  2015-06-10
  • 刊出日期:  2015-07-15

目录

    /

    返回文章
    返回