留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种修正的Laplace-同伦摄动算法

彭博 唐烁

彭博, 唐烁. 一种修正的Laplace-同伦摄动算法[J]. 应用数学和力学, 2015, 36(7): 768-778. doi: 10.3879/j.issn.1000-0887.2015.07.009
引用本文: 彭博, 唐烁. 一种修正的Laplace-同伦摄动算法[J]. 应用数学和力学, 2015, 36(7): 768-778. doi: 10.3879/j.issn.1000-0887.2015.07.009
PENG Bo, TANG Shuo. A Modified Laplace-Homotopy Perturbation Algorithm[J]. Applied Mathematics and Mechanics, 2015, 36(7): 768-778. doi: 10.3879/j.issn.1000-0887.2015.07.009
Citation: PENG Bo, TANG Shuo. A Modified Laplace-Homotopy Perturbation Algorithm[J]. Applied Mathematics and Mechanics, 2015, 36(7): 768-778. doi: 10.3879/j.issn.1000-0887.2015.07.009

一种修正的Laplace-同伦摄动算法

doi: 10.3879/j.issn.1000-0887.2015.07.009
基金项目: 国家自然科学基金(61272024)
详细信息
    作者简介:

    彭博(1989—),男,安徽阜阳人,硕士(通讯作者. E-mail: 1083283508@qq.com);唐烁(1964—),男,安徽巢湖人,教授,硕士生导师.

  • 中图分类号: O189.33

A Modified Laplace-Homotopy Perturbation Algorithm

Funds: The National Natural Science Foundation of China(61272024)
  • 摘要: 在NDLT-HPM(非线性分布Laplace-同伦摄动算法)的基础上,通过引入参数h,提出了一种修正的NDLT-HPM(简称MNDLT-HPM),参数的引入使得求解更加灵活,且能调节和控制级数解的收敛域,克服了NDLT-HPM在嵌入参数p=1处级数解可能不收敛的局限性,使得级数解可以有效地收敛至精确解,从而获得足够精确的解析近似解,两个数值实例表明了该解法的优越性和精确性.
  • [1] 搂森岳, 唐晓艳. 非线性数学物理方法[M]. 北京: 科学出版社, 2006.(LOU Sen-yue, TANG Xiao-yan. The Method of Nonlinear Mathematical and Physical[M]. Beijing: Science Press, 2006.(in Chinese))
    [2] 谷超豪, 胡和生, 周子翔. 孤立子理论中的达布变换及其几何应用[M]. 上海: 上海科学技术出版社, 1999.(GU Chao-hao, HU He-sheng, ZHOU Zi-xiang. Darboux Transformation in Soliton Theory and Its Geometric Applications[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1999.(in Chinese))
    [3] 陈登远. 孤子引论[M]. 北京: 科学出版社, 2006.(CHEN Deng-yuan. Soliton Introduction[M]. Beijing: Science Press, 2006.(in Chinese))
    [4] Ablowit M J, Clarkson P A. Solitons Nonlinear Evolution Equations and Inverse Scattering[M]. 世界图书出版公司北京公司, 2000.
    [5] Golbabai A, Javidi M. A third-order Newton type method for nonlinear equations based on modified homotopy perturbation method[J]. Applied Mathematics and Computation,2007,191(1): 199-205.
    [6] WANG Fei, LI Wei, ZHANG Hong-qing. A new extended homotopy perturbation method for nonlinear differential equations[J]. Mathematical and Computer Modelling,2012,55(3/4): 1471-1477.
    [7] HE Ji-huan. Homotopy perturbation method: a new nonlinear analytical technique[J]. Applied Mathematics and Computation,2003,135(1): 73-79.
    [8] Biazar J, Ghazvini H. Convergence of the homotopy perturbation method for partial differential equations[J]. Nonlinear Analysis: Real World Applications,2009,10(6): 2633-2640.
    [9] Adomian G. Nonlinear stochastic differential equations[J]. Journal of Mathematical Analysis and Applications,1976,12(55): 441- 452.
    [10] Adomian G, Adomian G E. A global method for solution of complex systems[J]. Mathematical Modelling,1984, 5(4): 251-263.
    [11] Lyapunov A M. The General Problem on Stability of Motion[M]. London: Taylor & Francis, 1992.
    [12] Skirmishing A V, Zhukov A T, Kolovos V G. Methods of Dynamics Calculation and Testing for Thin-Walled Structures[M]. Moscow: Mashinoxstroyenie, 1990.
    [13] LIAO Shi-jun. Proposed homotopy analysis technique for the solution of nonlinear problems[D]. Ph D Thesis. Shanghai: Shanghai Jiao Tong University, 1992.
    [14] LIAO Shi-jun. A kind of approximate solution technique which does not depend upon small parameters—II: an application in fluid mechanics[J]. International Journal of Non-Linear Mechanics,1997,32(5): 815-822.
    [15] Filobello-Nino U, Vazquez-Leal H, Benhammouda B, Hernandez-Martinez L, Hoyos-Reyes C, Perez-Sesma J A, Jimenez-Fernandez V M, Pereyra-Diaz D, Marin-Hernandez A, Diaz-Sanchez A, Huerta-Chua J, Cervantes-Perez J. Nonlinearities distribution Laplace transform-homotopy perturbation method[J]. Springer Plus,2014,28(3): 1-13.
    [16] Vazquez-Leal H, Sarmiento-Reyes A, Khan Y, Flabella-Nino U, Diaz-Sanchez A. Rational biparameter homotopy perturbation method and Laplace-Paden coupled version[J]. Journal of Applied Mathematics,2012,23(21): 456-467.
    [17] LIAO Shi-jun. Beyond Perturbation: Introduction to the Homotopy Analysis Method[M]. Chapman & Hall/Croppers, 2003.
    [18] Marinca V, Harrison N. Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer[J]. International Communications in Heat and Mass Transfer,2008,35(6): 710-715.
    [19] Marinca V, Hersanu N. An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate[J]. Applied Mathematics Letters,2009,22(2): 245-251.
    [20] 牛照. 非线性问题中的优化同伦分析方法[D]. 硕士学位论文. 上海: 上海交通大学, 2010.(NIU Zhao. Optimized homotopy method in nonlinear problem[D]. Master Thesis. Shanghai: Shanghai Jiao Tong University, 2010.(in Chinese))
  • 加载中
计量
  • 文章访问数:  971
  • HTML全文浏览量:  70
  • PDF下载量:  838
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-24
  • 修回日期:  2015-03-09
  • 刊出日期:  2015-07-15

目录

    /

    返回文章
    返回