Citation: | YAN Wang-ji, CAO Shi-ze, REN Wei-xin.. Uncertainty Quantification for System Identification Utilizing the Bayesian Theory and Its Recent Advances[J]. Applied Mathematics and Mechanics, 2017, 38(1): 44-59. doi: 10.21656/1000-0887.370571 |
[1] |
禹丹江. 土木工程结构模态参数识别——理论、 实现与应用[D]. 博士学位论文. 福州: 福州大学, 2006.(YU Dan-jiang. Modal parameter identification of civil engineering structures—theory, implementation and application[D]. PhD Thesis. Fuzhou: Fuzhou University, 2006.(in Chinese))
|
[2] |
李炜明, 董莪, 朱宏平. 土木工程系统辨识统计方法的现状与展望[J]. 振动与冲击, 2012,31(11): 42-47.(LI Wei-ming, DONG E, ZHU Hong-ping. Progress of system identification with statistical methods in civil engineering[J]. Journal of Vibration and Shock,2012,31(11): 42-47.(in Chinese))
|
[3] |
Beck J L, Katafygiotis L S. Updating models and their uncertainties—I: Bayesian statistical framework[J]. Journal of Engineering Mechanics,1998,124(4): 455-461.
|
[4] |
Katafygiotis L S, Beck J L. Updating models and their uncertainties—II: model identifiability[J]. Journal of Engineering Mechanics, 1998,124(4):463-467.
|
[5] |
YAN Wang-ji. Wireless sensor network based structural health monitoring accommodating multiple uncertainties[D]. PhD Thesis. Hong Kong: Hong Kong University of Science and Technology, 2013.
|
[6] |
Housner G W, Bergman L A, Caughey T K,et al. Structural control: past, present, and future[J]. Journal of Engineering Mechanics,1997,123(9): 897-971.
|
[7] |
Beck J L. Bayesian system identification based on probability logic[J]. Structural Control and Health Monitoring,2010,17(7): 825-847.
|
[8] |
茆诗松. 贝叶斯统计[M]. 北京: 中国统计出版社, 1999.(MAO Shi-song. Bayesian Statistics [M]. Beijing: China Statistics Press, 1999.(in Chinese))
|
[9] |
Bayes T. An essay towards solving a problem in the doctrine of chances[J]. Resonance,2003,8(4): 80-88.
|
[10] |
CHEUNG Sai-hung. Stochastic analysis, model and reliability updating of complex systems with applications to structural dynamics[D]. PhD Thesis. Pasadena, CA: California Institute of Technology, 2009.
|
[11] |
CHING Jian-ye, CHEN Yi-chu. Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging[J]. Journal of Engineering Mechanics,2007,133(7): 816-832.
|
[12] |
Katafygiotis L S, LAM Heung-fai. Tangential-projection algorithm for manifold representation in unidentifiable model updating problems[J]. Earthquake Engineering & Structural Dynamics,2002,31(4): 791-812.
|
[13] |
YUEN Ka-veng. Structural modal identification using ambient dynamic data[D]. Master Thesis. Hong Kong: Hong Kong University of Science and Technology, 1999.
|
[14] |
YUEN Ka-veng, Katafygiotis L S. Bayesian fast Fourier transform approach for modal updating using ambient data[J]. Advances in Structural Engineering,2003,6(2): 81-95.
|
[15] |
YUEN Ka-veng, Katafygiotis L S, Beck J L. Spectral density estimation of stochastic vector processes[J]. Probabilistic Engineering Mechanics,2002,17(3):265-272.
|
[16] |
Katafygiotis L S, YUEN Ka-veng. Bayesian spectral density approach for modal updating using ambient data[J]. Earthquake Engineering & Structural Dynamics,2001,30(8): 1103-1123.
|
[17] |
YUEN Ka-veng, Katafygiotis L S. Bayesian time-domain approach for modal updating using ambient data[J]. Probabilistic Engineering Mechanics,2001,16(3): 219-231.
|
[18] |
YUEN Ka-veng, Beck J L, Katafygiotis L S. Probabilistic approach for modal identification using non-stationary noisy response measurements only[J]. Earthquake Engineering & Structural Dynamics,2002,31(4): 1007-1023.
|
[19] |
YUEN Ka-veng. Bayesian Methods for Structural Dynamics and Civil Engineering [M]. New York: John Wiley & Sons Ltd, 2010.
|
[20] |
AU Siu-kui. Fast Bayesian FFT method for ambient modal identification with separated modes[J]. Journal of Engineering Mechanics,2011,137(3): 214-226.
|
[21] |
AU Siu-kui. Fast Bayesian ambient modal identification in the frequency domain, part I: posterior most probable value[J]. Mechanical Systems and Signal Processing,2012,26: 60-75.
|
[22] |
AU Siu-kui. Fast Bayesian ambient modal identification in the frequency domain, part II: posterior uncertainty[J]. Mechanical Systems and Signal Processing,2012,26: 76-90.
|
[23] |
AU Siu-kui, ZHANG Feng-liang. On assessing the posterior mode shape uncertainty in ambient modal identification[J]. Probabilistic Engineering Mechanics,2011,26(3): 427-434.
|
[24] |
AU Siu-kui. Uncertainty law in ambient modal identification—part I: theory[J]. Mechanical Systems and Signal Processing,2014,48(1/2): 15-33.
|
[25] |
AU Siu-kui. Uncertainty law in ambient modal identification—part II: implication and field verification[J]. Mechanical Systems and Signal Processing,2014,48(1/2): 34-48.
|
[26] |
AU Siu-kui. Connecting Bayesian and frequentist quantification of parameter uncertainty in system identification[J]. Mechanical Systems and Signal Processing,2012,29:328-342.
|
[27] |
AU Siu-kui, ZHANG Feng-liang, NI Yan-chun. Bayesian operational modal analysis: theory, computation, practice[J]. Computers & Structures,2013,126: 3-14.
|
[28] |
AU Siu-kui, NI Yan-chun. Fast Bayesian modal identification of structures using known single-input forced vibration data[J]. Structural Control and Health Monitoring,2014,21: 381-402.
|
[29] |
ZHANG Feng-liang, NI Yan-chun, AU Siu-kui, et al. Fast Bayesian approach for modal identification using free vibration data, part I: most probable value[J]. Mechanical Systems and Signal Processing,2016,70/71: 209-220.
|
[30] |
NI Yan-chun, ZHANG Feng-liang, LAM Heung-fai, et al. Fast Bayesian approach for modal identification using free vibration data, part II: posterior uncertainty and application[J]. Mechanical Systems and Signal Processing,2016,70/71: 221-244.
|
[31] |
AU Siu-kui. Assembling mode shapes by least squares[J]. Mechanical Systems and Signal Processing,2011,25(1): 163-179.
|
[32] |
AU Siu-kui, ZHANG Feng-liang. Fast Bayesian ambient modal identification incorporating multiple setups[J]. Journal of Engineering Mechanics,2012,138(7): 800-815.
|
[33] |
ZHANG Feng-liang, AU Siu-kui, LAM Heung-fai. Assessing uncertainty in operational modal analysis incorporating multiple setups using a Bayesian approach[J]. Structural Control and Health Monitoring,2015,22(3): 395-416.
|
[34] |
AU Siu-kui, ZHANG Feng-liang. Ambient modal identification of a primary-secondary structure by fast Bayesian FFT method[J]. Mechanical Systems & Signal Processing,2012,28: 280-296.
|
[35] |
AU Siu-kui, NI Yan-chun, ZHANG Feng-liang, et al. Full-scale dynamic testing and modal identification of a coupled floor slab system[J]. Engineering Structures,2012,37(4): 167-178.
|
[36] |
AU Siu-kui, ZHANG Feng-liang, TO Ping. Field observations on modal properties of two tall buildings under strong wind[J]. Journal of Wind Engineering and Industrial Aerodynamics,2012,101: 12-23.
|
[37] |
YAN Wang-ji, Katafygiotis L S. A two-stage fast Bayesian spectral density approach for ambient modal analysis. Part I: posterior most probable value and uncertainty[J]. Mechanical Systems & Signal Processing,2014,54/55: 139-155.
|
[38] |
YAN Wang-ji, Katafygiotis L S. A two-stage fast Bayesian spectral density approach for ambient modal analysis. Part II: mode shape assembly and case studies[J]. Mechanical Systems & Signal Processing,2015,54/55: 156-171.
|
[39] |
万华平. 结构动力不确定性及其随机模型修正方法研究[D]. 博士学位论文. 长沙: 中南大学, 2014.(WAN Hua-ping. Research on structural dynamic uncertainty and its stochastic model updating method[D]. PhD Thesis. Changsha: Central South University.(in Chinese))
|
[40] |
Beck J L, AU Siu-kui, Vanik M W. Monitoring structural health using a probabilistic measure[J]. Computer-Aided Civil and Infrastructure Engineering,2001,16(1): 1-11.
|
[41] |
Vanik M W, Beck J L, Au S K. Bayesian probabilistic approach to structural health monitoring[J]. Journal of Engineering Mechanics,2000,126(7): 738-745.
|
[42] |
CHING Jian-ye, Muto M, Beck J L. Structural model updating and health monitoring with incomplete modal data using Gibbs sampler[J]. Computer-Aided Civil and Infrastructure Engineering,2006,21(4): 242-257.
|
[43] |
CHING Jian-ye, Beck J L. Bayesian analysis of the phase II IASC-ASCE structural health monitoring experimental benchmark data[J]. Journal of Engineering Mechanics,2004,130(10): 1233-1244.
|
[44] |
CHING Jian-ye, Beck J L. New Bayesian model updating algorithm applied to a structural health monitoring benchmark[J]. Structural Health Monitoring,2004,3(4): 313-332.
|
[45] |
YUEN Ka-veng, Beck J L, Katafygiotis L S. Efficient model updating and health monitoring methodology using incomplete modal data without mode matching[J]. Structural Control & Health Monitoring,2006,13(1): 91-107.
|
[46] |
YAN Wang-ji, Katafygiotis L S. A novel Bayesian approach for structural model updating utilizing statistical modal information from multiple setups[J]. Structural Safety,2015,52: 260-271.
|
[47] |
Papadimitriou C, Papadioti D C. Component mode synthesis techniques for finite element model updating[J]. Computers & Structures,2013,126(1):15-28.
|
[48] |
Jensen H A, Millas E, Kusanovic D, et al. Model-reduction techniques for Bayesian finite element model updating using dynamic response data[J]. Computer Methods in Applied Mechanics and Engineering,2014,279: 301-324.
|
[49] |
Papadimitriou C, Papadioti D C. Fast Computing Techniques for Bayesian Uncertainty Quantification in Structural Dynamics [M]//Simmermacher T, Cogan S, Moaveni B, et al, ed. Topics in Model Validation and Uncertainty Quantification.Vol5. New York: Springer, 2013: 25-31.
|
[50] |
Craig Jr R R. Structural Dynamics: An Introduction to Computer Methods [M]. New York: John Wiley and Sons, 1981.
|
[51] |
Wan H P, Ren W X. Stochastic model updating utilizing Bayesian approach and Gaussian process model[J]. Mechanical Systems and Signal Processing,2016,70: 245-268.
|
[52] |
Behmanesh I, Moaveni B, Lombaert G, et al. Hierarchical Bayesian model updating for structural identification[J]. Mechanical Systems & Signal Processing,2015,64: 360-376.
|
[53] |
Gamerman D, Lopes H F. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference [M]. Boca Raton: Chapman & Hall, 2006.
|
[54] |
AU Siu-kui, Beck J L. A new adaptive importance sampling scheme for reliability analysis[J]. Structural Safety,1999,21(2): 135-158.
|
[55] |
Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing[J]. Science,1983,220(4598): 671-680.
|
[56] |
Beck J L, AU Siu-kui. Bayesian updating of structural models and reliability using Markov chainMonte Carlo simulation[J]. Journal of Engineering Mechanics,2002,128(4): 380-391.
|
[57] |
Goller B, Schuller G I. Investigation of model uncertainties in Bayesian structural model updating[J]. Journal of Sound & Vibration,2011,330(25): 6122-6136.
|
[58] |
ZHENG Wei, YU Yi. Bayesian probabilistic framework for damage identification of steel truss bridges under joint uncertainties[J]. Advances in Civil Engineering,2013,2013: 307171. doi: 10.1155/2013/307171.
|
[59] |
WANG Jia, Katafygiotis L S. Reliability-based optimal design of linear structures subjected to stochastic excitations[J]. Structural Safety,2014,47(2): 29-38.
|
[60] |
Beck J L, Zuev K M. Asymptotically independent Markov sampling: a new Markov chain Monte Carlo scheme for Bayesian inference[J]. International Journal for Uncertainty Quantification,2013,3(5): 445-474.
|
[61] |
CHEUNG Sai-hung, Beck J L. Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters[J]. Journal of Engineering Mechanics,2009,135(4): 243-255.
|
[62] |
Green P L. Bayesian system identification of a nonlinear dynamical system using a novel variant of simulated annealing[J]. Mechanical Systems & Signal Processing,2015,52/53: 133-146.
|
[63] |
Green P L, Cross E J, Worden K. Bayesian system identification of dynamical systems using highly informative training data[J].Mechanical Systems & Signal Processing,2015,56/57: 109-122.
|
[64] |
Marin J M, Pudlo P, Robert C P, et al. Approximate Bayesian computational methods[J]. Statistics & Computing,2012,22(6): 1167-1180.
|
[65] |
Chiachio M, Beck J L, Chiachio J, et al. Approximate Bayesian computation by subset simulation[J]. SIAM Journal on Scientific Computing,2014,36(3): A1339-A1338.
|
[66] |
Vakilzadeh M K, Huang Y, Beck J L, et al. Approximate Bayesian computation by subset simulation using hierarchical state-space models[J]. Mechanical Systems & Signal Processing,2017,84(B): 2-20.
|
[67] |
AU Siu-kui, Beck J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics,2001,16(4): 263-277.
|
[68] |
Straub D, Papaioannou I. Bayesian updating with structural reliability methods[J]. Journal of Engineering Mechanics,2014,141(3): 04014134.
|
[69] |
DiazDelaO F A, Garbuno-Inigo A, Au S K, et al. Bayesian updating and model class selection with subset simulation[Z]. arXiv preprint arXiv: 1510.06989, 2015.
|
[70] |
LAM Heung-fai, YANG Jia-hua, AU Siu-kui. Bayesian model updating of a coupled-slab system using field test data utilizing an enhanced Markov chain Monte Carlo simulation algorithm[J]. Engineering Structures,2015,102: 144-155.
|
[71] |
SUN Hao, Büyükztürk O. Probabilistic updating of building models using incomplete modal data[J]. Mechanical Systems and Signal Processing,2016,75: 27-40.
|
[72] |
ZHANG Jian, WAN Chun-feng, Sato T. Advanced Markov chain Monte Carlo approach for finite element calibration under uncertainty[J]. Computer-Aided Civil and Infrastructure Engineering,2013,28(7): 522-530.
|
[73] |
Simoen E, De Roeck G, Lombaert G. Dealing with uncertainty in model updating for damage assessment: a review[J]. Mechanical Systems and Signal Processing,2015,56/57: 123-149.
|
[74] |
Collins J D, Hart G C, Haselman T K, et al. Statistical identification of structures[J]. Aiaa Journal,1973,12(2): 185-190.
|
[75] |
Sohn H, Law K H. A Bayesian probabilistic damage detection using load-dependent Ritz vectors[C]// Proceedings of the 16th International Modal Analysis Conference.Santa Barbara, California : Society for Experimental Mechanics, Inc,1998: 374-380.
|
[76] |
Sohn H, Law K H. Bayesian probabilistic damage detection of a reinforced-concrete bridge column[J]. Earthquake Engineering & Structural Dynamics,2000,29(8): 1131-1152.
|
[77] |
Vanik M W. A Bayesian probabilistic approach to structural health monitoring: technical report EERL 97-07[R]. Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, CA, 1997.
|
[78] |
YUEN Ka-veng, AU Siu-kui, Beck J L. Two-stage structural health monitoring approach for phase I benchmark studies[J]. Journal of Engineering Mechanics,2004,130(1):16-33.
|
[79] |
YUEN Ka-veng, Katafygiotis L S. Model updating using response measurements without knowledge of the input spectrum[J]. Earthquake Engineering and Structural Dynamics,2005,34(2): 167-187.
|
[80] |
YUEN Ka-veng, Katafygiotis L S. Substructure identification and health monitoring using response measurement only[J]. Computer-Aided Civil and Infrastructure Engineering,2006,21(4): 280-291.
|
[81] |
YAN Wang-ji, Katafygiotis L S. Application of transmissibility matrix and random matrix to Bayesian system identification with response measurements only[J]. Smart Materials and Structures,2016,25(10): 105017.
|
[82] |
Ebrahimian H, Astroza R, Conte J P, et al. Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation[J]. Mechanical Systems & Signal Processing,2017,84(B): 194-222.
|
[83] |
易伟建, 周云, 李浩. 基于贝叶斯统计推断的框架结构损伤诊断研究[J]. 工程力学, 2009,26(5): 121-129.(YI Wei-jian, ZHOU Yun, LI Hao. Damage assessment research on frame structure based on Bayesian statistical inference[J]. Engineering Mechanics,2009,26(5): 121-129.(in Chinese) )
|
[84] |
Lam H F, Yin T. Statistical detection of multiple cracks on thin plates utilizing dynamic response[J]. Engineering Structures,2010,32(10): 3145-3152.
|
[85] |
Lam H F, Lee Y Y, Sun H Y, et al. Application of the spatial wavelet transform and Bayesian approach to the crack detection of a partially obstructed beam[J]. Thin-Walled Structures,2005,43(1): 1-21.
|
[86] |
Lam H F, Ng C T, Veidt M. Experimental characterization of multiple cracks in a cantilever beam utilizing transient vibration data following a probabilistic approach[J]. Journal of Sound and Vibration,2007,305(1): 34-49.
|
[87] |
Lam H F, Wong M T, Yang Y B. A feasibility study on railway ballast damage detection utilizing measured vibration of in situ concrete sleeper[J]. Engineering Structures,2012,45: 284-298.
|
[88] |
Ng C T, Veidt M, Lam H F. Guided wave damage characterisation in beams utilising probabilistic optimisation[J]. Engineering Structures,2009,31(12): 2842-2850.
|
[89] |
Flynn E B, Todd M D, Wilcox P D, et al. Maximum-likelihood estimation of damage location in guided-wave structural health monitoring[J]. Proceedings: Mathematical, Physical and Engineering Sciences,2011,467(2133): 2575-2596.
|
[90] |
YUEN Ka-veng. Recent developments of Bayesian model class selection and applications in civil engineering[J]. Structural Safety,2010,32(5): 338-346.
|
[91] |
Beck J L, YUEN Ka-veng. Model selection using response measurements: Bayesian probabilistic approach[J]. Journal of Engineering Mechanics,2004,130(2): 192-203.
|
[92] |
CHEUNG Sai-hung, Beck J L. Calculation of posterior probabilities for Bayesian model class assessment and averaging from posterior samples based on dynamic system data[J]. Computer-Aided Civil and Infrastructure Engineering,2010,25(5): 304-321.
|
[93] |
Papadimitriou C. Pareto optimal sensor locations for structural identification[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(12): 1655-1673.
|
[94] |
YUEN Ka-veng, KUOK Sin-chi. Efficient Bayesian sensor placement algorithm for structural identification: a general approach for multi-type sensory systems[J]. Earthquake Engineering & Structural Dynamics,2015,44(5): 757-774.
|
[95] |
SUN Hao, FENG Dong-ming, LIU Yang, et al. Statistical regularization for identification of structural parameters and external loadings using state space models[J]. Computer-Aided Civil and Infrastructure Engineering,2015,30(11): 843-858.
|
[96] |
Simoen E, Papadimitriou C, Lombaert G. On prediction error correlation in Bayesian model updating[J]. Journal of Sound and Vibration,2013,332(18): 4136-4152.
|