Citation: | XU Jianzhong, MO Jiaqi. Asymptotic Solutions to a Class of Catalytic Reaction Robin Problems[J]. Applied Mathematics and Mechanics, 2020, 41(1): 107-114. doi: 10.21656/1000-0887.400185 |
[1] |
DELBOSCO D. Existence and uniqueness for nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications,1996,204(2): 609-625.
|
[2] |
DE JAGER E M, JIANG F. The Theory of Singular Perturbation [M]. Amsterdam: North-Holland Publishing Company, 1996.
|
[3] |
BARBU L, MOROSANU G. Singularly Perturbed Boundary-Value Problems [M]. Basel: Birkhauserm Verlag AG, 2007.
|
[4] |
CHANG K W, HOWES F A. Nonlinear Singular Perturbation Phenomena: Theory and Applications [M]. Springer-Verlag, 1984.
|
[5] |
MARTINEZ S, WOLANSKI N. A singular perturbation problem for a quasi-linear operator satisfying the natural condition of Lieberman[J]. SIAM Journal on Mathematical Analysis,2009,41(1): 318-359.
|
[6] |
KELLOGG R B, KOPTEVA N. A singularly perturbed semilinear reaction-diffusion problem in a polygonal domain[J]. Journal of Differential Equations,2010,248(1): 184-208.
|
[7] |
TIAN C R, ZHU P. Existence and asymptotic behavior of solutions for quasilinear parabolic systems[J]. Acta Applicandae Mathematicae,2012,121(1): 157-173.
|
[8] |
SKRYNNIKOV Y. Solving initial value problem by matching asymptotic expansions[J]. SIAM Journal on Applied Mathematics,2012,72(1): 405-416.
|
[9] |
SAMUSENKO P F. Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations[J]. Journal of Mathematical Sciences,2013,189(5): 834-847.
|
[10] |
MO J Q, CHEN X F. Homotopic mapping method of solitary wave solutions for generalized complex Burgers equation[J]. Chinese Physics B,2010,19(10): 100203.
|
[11] |
MO J Q, LIN W T. A class of nonlinear singularly perturbed problems for reaction diffusion equations with boundary perturbation[J]. Acta Mathematicae Applicatae Sinica,2006,22(1): 27-32.
|
[12] |
MO J Q. A class of singularly perturbed differential-difference reaction diffusion equation[J]. Advance in Mathematics,2009,38(2): 227-231.
|
[13] |
MO J Q. Homotopiv mapping solving method for gain fluency of a laser pulse amplifier[J]. Science in China(Series G): Physics, Mechanics and Astronomy,2009,52(7): 1007-1070.
|
[14] |
MO J Q, LIN W T. Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations[J]. Journal of Systems Science and Complexity,2008,20(1): 119-128.
|
[15] |
MO J Q. Approximate solution of homotopic mapping to solitary wave for generalized nonlinear KdV system[J]. Chinese Physics Letters,2009,26(1): 010204.
|
[16] |
MO J Q. A singularly perturbed reaction diffusion problem for nonlinear boundary condition with two parameters[J]. Chinese Physics,2010,19(1): 010203.
|
[17] |
MO J Q, LIN W T. Generalized variation iteration solution of an atmosphere-ocean oscillator model for global climate[J]. Journal of Systems Science and Complexity,2011,24(2): 271-276.
|
[18] |
莫嘉琪, 林万涛, 杜增吉. 双参数非线性高阶椭圆型方程的奇摄动解[J]. 系统科学与数学, 2013,33(2): 217-221.(MO Jiaqi, LIN Wantao, DU Zengji. Singularly perturbed solution for nonlinear higher order elliptic equations with two parameters[J]. Journal of Systems Science and Mathematical Sciences,2013,33(2): 217-221.(in Chinese))
|
[19] |
冯依虎, 陈怀军, 莫嘉琪. 一类非线性奇异摄动自治微分系统的渐近解[J]. 应用数学和力学, 2018,39(3): 355-363.(FENG Yihu, CHEN Huaijun, MO Jiaqi. Asymptotic solution to a class of nonlinear singular perturbation autonomic differential system[J]. Applied Mathematics and Mechanics,2018,39(3): 355-363.(in Chinese))
|
[20] |
冯依虎, 刘树德, 莫嘉琪. 一类两参数非线性反应扩散方程奇摄动问题的广义解[J]. 应用数学和力学, 2017,38(5): 561-569.(FENG Yihu, LIU Shude, MO Jiaqi. Generalized solution to a class of singularly perturbed problems for the nonlinear reaction diffusion equation with two parameters[J].Applied Mathematics and Mechanics,2017,38(5): 561-569.(in Chinese))
|
[21] |
史娟荣, 朱敏, 莫嘉琪. 一类Fermi气体光晶格非线性轨线模型[J]. 应用数学和力学, 2017,38(4): 477-485.(SHI Juanrong, ZHU Min, MO Jiaqi. Study of nonlinear path curve model for a class of Fermi gases optical lattices[J]. Applied Mathematics and Mechanics,2017,〖STHZ〗 38(4): 477-485.(in Chinese))
|
[22] |
XU J Z, ZHOU Z F. Existence and uniqueness of anti-periodic solutions to an n th-order nonlinear differential equation with multiple deviating arguments[J]. Annals of Differential Equations,2012,28(1): 105-114.
|
[23] |
徐建中, 周宗福. 一类四阶具有多个偏差变元 p- Laplacian中立型微分方程周期解的存在性[J]. 重庆工商大学学报(自然科学版), 2012,29(11): 9-16.(XU Jianzhong, ZHOU Zongfu. The existence of periodic solutions for a class of fourth-order p- Laplacian neutral functional differential equation with multiple deviating arguments[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2012,29(11): 9-16.(in Chinese))
|
[24] |
XU J Z, MO J Q. The solution of disturbed time delay wind field system of ocean[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis,2019,52(1): 59-67.
|