Citation: | LIU Xingwei, LI Xing, WANG Wenshuai. The Anti-Plane Problem of Regular n-Polygon Holes With Radial Edge Cracks in 1D Hexagonal Piezoelectric Quasicrystals[J]. Applied Mathematics and Mechanics, 2020, 41(7): 713-724. doi: 10.21656/1000-0887.400334 |
[1] |
VALDOVINOS J. Pediatric mechanical circulatory support applications for frequency-leveraged piezoelectric hydraulic pumps[D]. PhD Thesis. Los Angeles: University of California, 2014.
|
[2] |
WANG Y J, GAO C F. The mode Ⅲ cracks originating from the edge of a circular hole in a piezoelectric solid[J]. International Journal of Solids and Structures,2008,45(16): 4590-4599.
|
[3] |
WANG Y J, GAO C F, SONG H. The anti-plane solution for the edge cracks originating from an arbitrary hole in a piezoelectric material[J]. Mechanics Research Communications,2015,65: 17-23.
|
[4] |
GHERROUS M, FERDJANI H. Analysis of a Griffith crack at the interface of two piezoelectric materials under anti-plane loading[J]. Continuum Mechanics and Thermodynamics,2016,28(6): 1683-1704.
|
[5] |
SHECHTMAN D G, BLECH I A, GRATIAS D, et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters,1984,53(20): 1951-1953.
|
[6] |
LI L H, FAN T Y. Exact solutions of two semi-infinite collinear cracks in a strip of one dimensional hexagonal quasicrystal[J]. Applied Mathematics and Computation,2008,196(1): 1-5.
|
[7] |
FAN T Y. Mathematical Theory of Elasticity of Quasicrystals and Its Applications [M]. Berlin: Springer, 2011.
|
[8] |
HU C Z, WANG R H, DING D H, et al. Piezoelectric effects in quasicrystals[J]. Physical Review B,1997,56(5): 2463-2468.
|
[9] |
RAO K R M, RAO P H, CHAITANYA B S K. Piezoelectricity in quasicrystals: a group-theoretical study[J]. Pramana: Journal of Physics,2007,68(3): 481-487.
|
[10] |
ALTAY G, DKMECI M C. On the fundamental equations of piezoelasticity of quasicrystal media[J]. International Journal of Solids and Structures,2012,49(23/24): 3255-3262.
|
[11] |
LI X Y, LI P D, WU T H, et al. Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect[J]. Physics Letters A,2014,378(10): 826-834.
|
[12] |
ZHANG L L, ZHANG Y M, GAO Y. General solutions of plane elasticity of one-dimensional orthorhombic quasicrystals with piezoelectric effect[J]. Physics Letters A,2014,378(37): 2768-2776.
|
[13] |
GUO J H, PAN E. Three-phase cylinder model of 1D hexagonal piezoelectric quasicrystal composites[J]. Journal of Applied Mechanics,2016,〖STHZ〗 83(8): 081007.
|
[14] |
YU J, GUO J H, PAN E, et al. General solutions of plane problem in one-dimensional quasicrystal piezoelectric materials and its application on fracture mechanics[J]. Applied Mathematics and Mechanics(English Edition),2015,36(6): 793-814.
|
[15] |
FAN T Y, LI X F, SUN Y F. A moving screw dislocation in a one-dimensional hexagonal quasicrystals[J]. Acta Physica Sinica (Overseas Edition),1999,8(4): 288-295.
|
[16] |
LI X, HUO H S, SHI P P. Analytic solutions of two collinear fast propagating cracks in a symmetrical strip of one-dimensional hexagonal piezoelectric quasicrystals[J]. Chinese Journal of Solid Mechanics,2014,35(2): 1-7.
|
[17] |
TUPHOLME G E. A non-uniformly loaded anti-plane crack embedded in a half-space of a one-dimensional piezoelectric quasicrystal[J]. Meccanica,2018,53(4/5): 973-983.
|
[18] |
ZHOU Y B, LI X F. Two collinear mode-Ⅲ cracks in one-dimensional hexagonal piezoelectric quasicrystal strip[J]. Engineering Fracture Mechanics,2018,189: 133-147.
|
[19] |
KIRSCH G. Die theorie der elastizitt und die bedürfnisse der festigkeitslehre[J]. Zantralblatt Verlin Deutscher Ingenieure,1898,42(29): 797-807.
|
[20] |
UKADGAONKER V G, AWASARE P J. A novel method of stress analysis of an infinite plate with circular hole with uniform loading at infinity[J]. Indian Journal of Science and Technology,1993,31: 539-541.
|
[21] |
WANG W S, YUAN H T, LI X, et al. Stress concentration and damage factor due to central elliptical hole in functionally graded panels subjected to uniform tensile traction[J]. Materials,2019,12(3): 422.
|
[22] |
UKADGAONKER V G, AWASARE P J. A novel method of stress analysis of an infinite plate with rounded corners of a rectangular hole under uniform edge loading[J]. Indian Journal of Engineering and Materials Sciences,1994,1: 17-25.
|
[23] |
REZAEEPAZH J, JAFARI M. Stress concentration in metallic plates with special shaped cutout[J]. International Journal of Mechanical Sciences,2010,52(1): 96-102.
|
[24] |
DAI L C, GUO W L, WANG X. Stress concentration at an elliptic hole in transversely isotropic piezoelectric solids[J]. International Journal of Solids and Structures,2006,43(6): 1818-1831.
|
[25] |
崔建斌, 姬安召, 熊贵明. 基于Schwarz-Christoffel变换的圆形隧道围岩应力分布特征研究[J]. 应用数学和力学, 2019,〖STHZ〗 40(10): 1089-1098.(CUI Jianbin, JI Anzhao, XIONG Guiming. Research on surrounding rock stress distributions for circular tunnels based on the Schwarz-Christoffel transformation[J]. Applied Mathematics and Mechanics,2019,40(10): 1089-1098.(in Chinese))
|
[26] |
YANG J, LI X, DING S H. Anti-plane analysis of a circular hole with three unequal cracks in one-dimensional hexagonal piezoelectric quasicrystals[J]. Chinese Journal of Engineering Mathematics,2016,33(2): 184-198.
|
[27] |
杨娟, 李星, 周跃亭. 一维六方压电准晶中圆孔边周期裂纹分析[J]. 振动与冲击, 2019,38(18): 62-71.(YANG Juan, LI Xing, ZHOU Yueting. Analysis of periodic cracks emanating from a circular hole in one-dimensional hexagonal piezoelectric quasicrystals[J]. Journal of Vibration and Shock,2019,38(18): 62-71.(in Chinese))
|
[28] |
YU J, GUO J H, XING Y M. Complex variable method for an anti-plane elliptical cavity of one-dimensional hexagonal piezoelectric quasicrystals[J].Chinese Journal of Aeronautics,2015,28(4): 1287-1295.
|
[29] |
樊世旺, 郭俊宏. 一维六方压电准晶三角形孔边裂纹反平面问题[J]. 应用力学学报, 2016,〖STHZ〗 33(3): 421-426.(FAN Shiwang, GUO Junhong. Anti-plane problem of an edge crack emanating from a triangle hole in one-dimensional hexagonal piezoelectric quasicrystals[J]. Chinese Journal of Applied Mechanics,2016,33(3): 421-426.(in Chinese))
|
[30] |
白巧梅, 丁生虎. 一维六方准晶中正六边形孔边裂纹的反平面问题[J]. 应用数学和力学, 2019,〖STHZ〗 40(10): 1071-1080.(BAI Qiaomei, DING Shenghu. An anti-plane problem of cracks at edges of regular hexagonal holes in 1D hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics,2019,40(10): 1071-1080.(in Chinese))
|
[31] |
GUO J H, LU Z X. Exact solution of four cracks originating from an elliptical hole in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Computation,2011,217(22): 9397-9403.
|
[32] |
MUSKHELISHVILI N I. Some Fundamental Problems of the Mathematical Theory of Elasticity [M]. Moscow: Nauka, 1966.
|
[33] |
路见可. 平面弹性复变方法[M]. 武汉: 武汉大学出版社, 2002.(LU Jianke. Plane Elastic Complex Method [M]. Wuhan: Wuhan University Press, 2002.(in Chinese))
|
[34] |
SHARMA D S. Stress distribution around polygonal holes[J]. International Journal of Mechanical Sciences,2012,〖STHZ〗 65(1): 115-124.
|
[35] |
邵阳, 郭俊宏. 一维六方准晶中正方形孔边双裂纹的反平面问题[J]. 内蒙古工业大学学报, 2014,33(2): 81-87.(SHAO Yang, GUO Junhong. Anti-plane analysis of double cracks originating from a square hole in one-dimensional hexagonal quasicrystals[J]. Journal of Inner Mongolia University of Technology,2014, 33(2): 81-87.(in Chinese))
|
[36] |
GUO J H, LIU G T. Stress analysis of the problem about a circular hole with asymmetry collinear cracks[J]. Journal of Inner Mongolia Normal University,2007,36(4): 418-422.
|