Volume 43 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
PAN Xianyun, YU Jianghong, ZHOU Fenglin. Research on the Dual Reciprocity Boundary Element Method for Non-Homogeneous Elasticity Problems[J]. Applied Mathematics and Mechanics, 2022, 43(9): 1004-1015. doi: 10.21656/1000-0887.420208
Citation: PAN Xianyun, YU Jianghong, ZHOU Fenglin. Research on the Dual Reciprocity Boundary Element Method for Non-Homogeneous Elasticity Problems[J]. Applied Mathematics and Mechanics, 2022, 43(9): 1004-1015. doi: 10.21656/1000-0887.420208

Research on the Dual Reciprocity Boundary Element Method for Non-Homogeneous Elasticity Problems

doi: 10.21656/1000-0887.420208
  • Received Date: 2021-07-26
  • Rev Recd Date: 2022-02-16
  • Available Online: 2022-07-15
  • Publish Date: 2022-09-30
  • Based on the boundary element method theory of elasticity, the boundary element method was combined with the dual reciprocity method, and the exponential basis function was used to interpolate the non-homogeneous term to obtain the dual reciprocity boundary integral equation. Then the boundary integral equation was discretized into algebraic equations, and the equations were solved with the known boundary conditions and equation particular solutions to obtain the displacement and boundary surface forces in the domain. The shape parameter of the exponential basis function was decided by the minimum value of the nearest distance between interpolation points. With this shape parameter change scheme, the RBF interpolation accuracy and stability were analyzed. Again, the exponential basis function was applied to the dual reciprocal boundary element method to analyze the calculation accuracy and stability, and verify the effectiveness of the exponential interpolation function as the radial basis function of the dual reciprocal boundary element method to solve the body force problem in the elastic domain.

  • loading
  • [1]
    ZIENKIEWICZ O C, TAYLOR R L. The Finite Element Method[M]. London: McGraw-hill, 1977.
    [2]
    ATLURI S N, ZHU T L. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics[J]. Computational Mechanics, 2000, 25(2): 169-179.
    [3]
    SAUTER S A, SCHWAB C. Boundary Element Methods[M]. Berlin: Springer, 2010.
    [4]
    姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010.

    YAO Zhenhan, WANG Haitao. Boundary Element Method[M]. Beijing: Higher Education Press, 2010. (in Chinese)
    [5]
    胡宗军, 牛忠荣, 程长征, 等. 薄体结构温度场的高阶边界元分析[J]. 应用数学和力学, 2015, 36(2): 149-158 doi: 10.3879/j.issn.1000-0887.2015.02.004

    HU Zongjun, NIU Zhongrong, CHENG Changzheng, et al. High-order boundary element analysis of temperature fields in thin-walled structures[J]. Applied Mathematics and Mechanics, 2015, 36(2): 149-158.(in Chinese) doi: 10.3879/j.issn.1000-0887.2015.02.004
    [6]
    李聪, 牛忠荣, 胡宗军, 等. 求解双材料裂纹结构全域应力场的扩展边界元法[J]. 应用数学和力学, 2019, 40(8): 926-937

    LI Cong, NIU Zhongrong, HU Zongjun, et al. Computation of total stress fields for cracked bi-material structures with the extended boundary element method[J]. Applied Mathematics and Mechanics, 2019, 40(8): 926-937.(in Chinese)
    [7]
    陈明祥. 弹塑性力学[M]. 北京: 科学出版社, 2007.

    CHEN Mingxiang. Elastoplastic Mechanics[M]. Beijing: Science Press, 2007. (in Chinese)
    [8]
    FREDHOLM I. Solution d’un probleme fundamental de la theorie de l’elasticitie[J]. Arkiv for Matematik Astronomi och Fysik, 1905, 2: 1-8.
    [9]
    RIZZO, FRANK J. An integral equation approach to boundary value problems of classical elastostatics[J]. Quarterly of Applied Mathematics, 1967, 25(1): 83. doi: 10.1090/qam/99907
    [10]
    CRUSE T A. Numerical solutions in three dimensional elastostatics[J]. International Journal of Solids & Structures, 1969, 5(12): 1259-1274.
    [11]
    孙秀山, 黄立新, 刘应华, 等. 二维正交各向异性结构弹塑性问题的边界元分析[J]. 复合材料学报, 2005, 22(3): 156-161 doi: 10.3321/j.issn:1000-3851.2005.03.030

    SUN Xiushan, HUANG Lixin, LIU Yinghua, et al. Boundary element analysis for elasto-plastic problem of 2-D orthotropic structures[J]. Acta Materiae Compositae Sinica, 2005, 22(3): 156-161.(in Chinese) doi: 10.3321/j.issn:1000-3851.2005.03.030
    [12]
    姜弘道. 弹性力学问题的边界元法[M]. 北京: 中国水利水电出版社, 2008.

    JIANG Hongdao. Boundary Element Method for Elastic Problems[M]. Beijing: China Water & Power Press, 2008. (in Chinese)
    [13]
    PARTRIDGE P W, BREBBIA C A, WROBEL L C. The Dual Reciprocity Boundary Element Method[M]. Elsevier Applied Science, 1992.
    [14]
    NOWAK A J, BREBBIA C A. The multiple-reciprocity method: a new approach for transforming BEM domain integrals to the boundary[J]. Engineering Analysis With Boundary Elements, 1989, 6(3): 164-167. doi: 10.1016/0955-7997(89)90032-5
    [15]
    GAO X W. The radial integration method for evaluation of domain integrals with boundary-only discretization[J]. Engineering Analysis With Boundary Elements, 2002, 26(10): 905-916. doi: 10.1016/S0955-7997(02)00039-5
    [16]
    高锁文, 汪越胜, 章梓茂, 等. 含孔薄板弯曲波动的双互易边界元法[J]. 应用数学和力学, 2005, 26(12): 1417-1424 doi: 10.3321/j.issn:1000-0887.2005.12.005

    GAO Suowen, WANG Yuesheng, ZHANG Zhimao, et al. Dual reciprocity boundary element method for flexural waves in thin plate with cutout[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1417-1424.(in Chinese) doi: 10.3321/j.issn:1000-0887.2005.12.005
    [17]
    苗雨, 王元汉. 弹性动力学的双互易杂交边界点法[J]. 力学学报, 2009, 41(1): 122-128 doi: 10.3321/j.issn:0459-1879.2009.01.017

    MIAO Yu, WANG Yuanhan. Dual reciprocity hybrid boundary node method for elastodynamics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 122-128.(in Chinese) doi: 10.3321/j.issn:0459-1879.2009.01.017
    [18]
    周枫林, 王炜佳, 廖海洋, 等. 标量波传播问题的双互易精细积分法[J]. 计算物理, 2020, 37(1): 26-36 doi: 10.19596/j.cnki.1001-246x.8003

    ZHOU Fenglin, WANG Weijia, LIAO Haiyang, et al. A time domain dual reciprocity precise integration method for scalar wave propagation problems[J]. Chinese Journal of Computational Physics, 2020, 37(1): 26-36.(in Chinese) doi: 10.19596/j.cnki.1001-246x.8003
    [19]
    师晋红, 傅卓佳, 陈文. 边界节点法计算二维瞬态热传导问题[J]. 应用数学和力学, 2014, 35(2): 111-120 doi: 10.3879/j.issn.1000-0887.2014.02.001

    SHI Jinhong, FU Zhuojia, CHEN Wen. Boundary knot method for 2D transient heat conduction problems[J]. Applied Mathematics and Mechanics, 2014, 35(2): 111-120.(in Chinese) doi: 10.3879/j.issn.1000-0887.2014.02.001
    [20]
    周枫林. 热传导问题中的边界面法研究[D]. 博士学位论文. 长沙: 湖南大学, 2013.

    ZHOU Fenglin. The boundary face method for heat conduction problem[D]. PhD Thesis. Changsha: Hunan University, 2013. (in Chinese)
    [21]
    FRANKE R. Scattered data interpolation: tests of some methods[J]. Mathematics of Computation, 1982, 38(157): 181-200.
    [22]
    赵培玉. 用径向基函数方法求解椭圆型偏微分方程[D]. 硕士学位论文. 沈阳: 东北大学, 2009.

    ZHAO Peiyu. Using radial basis function method solving elliptic partial differential equation[D]. Master Thesis. Shenyang: Northeastern University, 2009. (in Chinese)
    [23]
    聂鑫. 边值问题求解的径向基函数方法及其关键问题研究[D]. 硕士学位论文. 重庆: 重庆大学, 2014.

    NIE Xin. Research on radial basis function method and its key issues in solving boundary value problems[D]. Master Thesis. Chongqing: Chongqing University, 2014. (in Chinese)
    [24]
    曾华, 周枫林, 余江鸿. 含非均匀体力机械结构弹性力学问题的双互易边界元法[J]. 机电产品开发与创新, 2021, 34(2): 24-26 doi: 10.3969/j.issn.1002-6673.2021.02.007

    ZENG Hua, ZHOU Fenglin, YU Jianghong. Dual reciprocal boundary element method for elastic problems of mechanical structures with nonuniform force[J]. Development & Innovation of Machinery & Electrical Products, 2021, 34(2): 24-26.(in Chinese) doi: 10.3969/j.issn.1002-6673.2021.02.007
    [25]
    ZHOU F, ZHANG J, SHENG X, et al. A dual reciprocity boundary face method for 3D non-homogeneous elasticity problems[J]. Engineering Analysis With Boundary Elements, 2012, 36(9): 1301-1310. doi: 10.1016/j.enganabound.2012.03.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article views (601) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return