Volume 44 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
ZHAO Yingzhi, TANG Huaiping, LAI Zedong, ZHANG Jiajie. Free Vibration Analysis of Porous 2D Functionally Graded Material Microbeams on Winkler's Foundation[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1354-1365. doi: 10.21656/1000-0887.440050
Citation: ZHAO Yingzhi, TANG Huaiping, LAI Zedong, ZHANG Jiajie. Free Vibration Analysis of Porous 2D Functionally Graded Material Microbeams on Winkler's Foundation[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1354-1365. doi: 10.21656/1000-0887.440050

Free Vibration Analysis of Porous 2D Functionally Graded Material Microbeams on Winkler's Foundation

doi: 10.21656/1000-0887.440050
  • Received Date: 2023-02-27
  • Rev Recd Date: 2023-04-03
  • Publish Date: 2023-11-01
  • Based on the modified couple stress theory and the Timoshenko beam theory, the governing equations for free vibration of porous 2D functional graded material (FGM) on Winkler's foundation were derived under Hamilton's principle. The differential quadrature method was used to obtain the numerical solutions of the vibration frequencies and fundamental mode shapes of microbeams with both ends clamped (C-C) and simply supported (S-S). The improved stiffness matrix was used to greatly improve the calculation efficiency. The proposed model was degenerated to the macro and micro 2D-FGM models, which were compared with those in previous literatures for validation. The results show that, the present mathematical model is suitable for different types of 2D material distributions. The dimensionless frequencies increase with the dimensionless elastic modulus of Winkler's foundation. Under a certain dimensionless elastic foundation modulus, the dimensionless frequencies decrease with the functionally graded index, the axial functionally graded index and the porosity. The effect of the material variation on the mode shape increases with the mode number. For the same parameter, the dimensionless frequencies of the beam with uniform porosity distribution are slightly lower than those with linear porosity distribution.
  • loading
  • [1]
    UDUPA G, RAO S S, GANGADHARAN K V. Functionally graded composite materials: an overview[J]. Procedia Materials Science, 2014, 5: 1291-1299. doi: 10.1016/j.mspro.2014.07.442
    [2]
    SANKAR B V. An elasticity solution for functionally graded beams[J]. Composites Science and Technology, 2001, 61(5): 689-696. doi: 10.1016/S0266-3538(01)00007-0
    [3]
    MALEKZADEH P, KARAMI G, FARID M. DQEM for free vibration analysis of Timoshenko beams on elastic foundations[J]. Computational Mechanics, 2003, 31(3/4): 219-228.
    [4]
    SHARIAT B A S, ESLAMI M R. Buckling of thick functionally graded plates under mechanical and thermal loads[J]. Composite Structures, 2007, 78(3): 433-439. doi: 10.1016/j.compstruct.2005.11.001
    [5]
    BENATTA M A, MECHAB I, TOUNSI A, et al. Static analysis of functionally graded short beams including warping and shear deformation effects[J]. Computational Materials Science, 2008, 44(2): 765-773. doi: 10.1016/j.commatsci.2008.05.020
    [6]
    ALSHORBAGY A E, ELTAHER M A, MAHMOUD F F. Free vibration characteristics of a functionally graded beam by finite element method[J]. Applied Mathematical Modelling, 2011, 35(1): 412-425. doi: 10.1016/j.apm.2010.07.006
    [7]
    ŞIMŞEK M. Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions[J]. Composite Structures, 2015, 133: 968-978. doi: 10.1016/j.compstruct.2015.08.021
    [8]
    ŞIMŞEK M. Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions[J]. Composite Structures, 2016, 149: 304-314. doi: 10.1016/j.compstruct.2016.04.034
    [9]
    滕兆春, 衡亚洲, 张会凯, 等. 弹性地基上转动FGM梁自由振动的DTM分析[J]. 计算力学学报, 2017, 34(6): 712-717. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201706006.htm

    TENG Zhaochun, HENG Yazhou, ZHANG Huikai, et al. DTM analysis for free vibration of rotating FGM beams resting on elastic foundations[J]. Chinese Journal of Computational Mechanics, 2017, 34(6): 712-717. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201706006.htm
    [10]
    蒲育, 周凤玺. FGM梁临界屈曲载荷的改进型GDQ法分析[J]. 应用基础与工程科学学报, 2019, 27(6): 1308-1320. doi: 10.16058/j.issn.1005-0930.2019.06.011

    PU Yu, ZHOU Fengxi. Critical buckling loads analysis of FGM beams by a modified generalized differential quadrature method[J]. Journal of Basic Science and Engineering, 2019, 27(6): 1308-1320. (in Chinese) doi: 10.16058/j.issn.1005-0930.2019.06.011
    [11]
    WITVROUW A, MEHTA A. The use of functionally graded poly-sige layers for MEMS applications[J]. Materials Science Forum, 2005, 520(492/493): 255-260.
    [12]
    FLECK N A, MULLER G M, ASHBY M F, et al. Strain gradient plasticity: theory and experiment[J]. Acta Metallurgica et Materialia, 1994, 42(2): 475-487. doi: 10.1016/0956-7151(94)90502-9
    [13]
    BAŽANT Z P. Size effect in blunt fracture: concrete, rock, metal[J]. Journal of Engineering Mechanics, 1984, 110(4): 518-535. doi: 10.1061/(ASCE)0733-9399(1984)110:4(518)
    [14]
    YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures, 2002, 39(10): 2731-2743. doi: 10.1016/S0020-7683(02)00152-X
    [15]
    周强. 考虑表面效应的压电纳米梁的振动研究[J]. 应用数学和力学, 2020, 41(8): 853-865. doi: 10.21656/1000-0887.400330

    ZHOU Qiang. Vibration of piezoelectric nanobeams with surface effects[J]. Applied Mathematics and Mechanics, 2020, 41(8): 853-865. (in Chinese) doi: 10.21656/1000-0887.400330
    [16]
    ŞIMŞEK M, KOCATÜRK T, AKBAŞ Ş D. Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory[J]. Composite Structures, 2013, 95: 740-747. doi: 10.1016/j.compstruct.2012.08.036
    [17]
    KE L L, WANG Y S. Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory[J]. Composite Structures, 2011, 93(2): 342-350. doi: 10.1016/j.compstruct.2010.09.008
    [18]
    ŞIMŞEK M, REDDY J N. Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory[J]. International Journal of Engineering Science, 2013, 64: 37-53. doi: 10.1016/j.ijengsci.2012.12.002
    [19]
    AL-BASYOUNI K S, TOUNSI A, MAHMOUD S R. Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position[J]. Composite Structures, 2015, 125: 621-630. doi: 10.1016/j.compstruct.2014.12.070
    [20]
    AKGÖZ B, CIVALEK Ö. Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory[J]. Composite Structures, 2013, 98: 314-322. doi: 10.1016/j.compstruct.2012.11.020
    [21]
    刘松正, 张波, 沈火明, 等. 准三维功能梯度微梁的尺度效应模型及微分求积有限元[J]. 应用数学和力学, 2021, 42(6): 623-636. doi: 10.21656/1000-0887.410260

    LIU Songzheng, ZHANG Bo, SHEN Huoming, et al. A size-dependent quasi-3D functionally graded microbeam model andrelated differential quadrature finite elements[J]. Applied Mathematics and Mechanics, 2021, 42(6): 623-636. (in Chinese) doi: 10.21656/1000-0887.410260
    [22]
    雷剑, 谢宇阳, 姚明格, 等. 变截面二维功能梯度微梁的振动和屈曲特性[J]. 应用数学和力学, 2022, 43(10): 1133-1145. doi: 10.21656/1000-0887.420323

    LEI Jian, XIE Yuyang, YAO Mingge, et al. Vibration and buckling characteristics of two-dimensional functionally graded microbeams with variable cross sections[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1133-1145. (in Chinese) doi: 10.21656/1000-0887.420323
    [23]
    CHEN X, LU Y, LI Y. Free vibration, buckling and dynamic stability of bi-directional FG microbeam with a variable length scale parameter embedded in elastic medium[J]. Applied Mathematical Modelling, 2019, 67: 430-448. doi: 10.1016/j.apm.2018.11.004
    [24]
    CHEN D, YANG J, KITIPORNCHAI S. Elastic buckling and static bending of shear deformable functionally graded porous beam[J]. Composite Structures, 2015, 133: 54-61. doi: 10.1016/j.compstruct.2015.07.052
    [25]
    CHEN D, YANG J, KITIPORNCHAI S. Free and forced vibrations of shear deformable functionally graded porous beams[J]. International Journal of Mechanical Sciences, 2016, 108/109: 14-22.
    [26]
    LEI Y L, GAO K, WANG X, et al. Dynamic behaviors of single- and multi-span functionally graded porous beams with flexible boundary constraints[J]. Applied Mathematical Modelling, 2020, 83: 754-776.
    [27]
    王伟斌, 杨文秀, 滕兆春. 多孔功能梯度材料Timoshenko梁的自由振动分析[J]. 计算力学学报, 2021, 38(5): 586-594. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202205007.htm

    WANG Weibin, YANG Wenxiu, TENG Zhaochun. Free vibration analysis of porous functionally graded materials Timoshenko beam[J]. Chinese Journal of Computational Mechanics, 2021, 38(5): 586-594. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202205007.htm
    [28]
    WANG Xinwei. Differential Quadrature and Differential Quadrature Based Element Methods[M]. 2015.
    [29]
    TORNABENE F, FANTUZZI N, UBERTINI F, et al. Strong formulation finite element method based on differential quadrature: a survey[J]. Applied Mechanics Reviews, 2015, 67(2): 020801.
    [30]
    吴明明. 弹性地基上的功能梯度梁力学问题研究[D]. 硕士学位论文. 邯郸: 河北工程大学, 2019.

    WU Mingming. Research on mechanical problems of functionally graded beams resting on the elastic foundation[D]. Master Thesis. Handan: Hebei University of Engineering, 2019. (in Chinese)
    [31]
    DENG H, CHENG W. Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams[J]. Composite Structures, 2016, 141: 253-263.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (513) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return