Volume 46 Issue 4
Apr.  2025
Turn off MathJax
Article Contents
ZHANG Bo, WANG Yichen, CAI Chengyu, DING Hu, CHEN Liqun. Analysis on Dynamic Characteristics of Rotating Flow Tubes With Multi-Channel and Different Flow Directions[J]. Applied Mathematics and Mechanics, 2025, 46(4): 438-450. doi: 10.21656/1000-0887.440359
Citation: ZHANG Bo, WANG Yichen, CAI Chengyu, DING Hu, CHEN Liqun. Analysis on Dynamic Characteristics of Rotating Flow Tubes With Multi-Channel and Different Flow Directions[J]. Applied Mathematics and Mechanics, 2025, 46(4): 438-450. doi: 10.21656/1000-0887.440359

Analysis on Dynamic Characteristics of Rotating Flow Tubes With Multi-Channel and Different Flow Directions

doi: 10.21656/1000-0887.440359
Funds:

The National Science Foundation of China(11702033;11872159)

  • Received Date: 2023-12-19
  • Rev Recd Date: 2024-05-11
  • Available Online: 2025-04-30
  • Turbine blades were the key components for gas turbine power output. To work normally in high temperature environment, cooling tube channels need be set inside the blades. The blade has complex dynamic behaviors under the joint action of internal fluid and its own rotation. The blade was simplified into a rotating pipe conveying fluid tube with multi-channel and different flow directions. The kinetic equation was derived with the energy method and the complex modal analysis was carried out. The effects of the flow direction, the velocity and the rotating speed on the stability and modal transition phenomena of the system were revealed with numerical examples.
  • loading
  • HAN J C. Turbine blade cooling studies at Texas A&M university: 1980-2004[J].Journal of Thermophysics and Heat Transfer,2006,20(2): 161-187.
    [2]蒋洪德, 任静, 李雪英, 等. 重型燃气轮机现状与发展趋势[J]. 中国电机工程学报, 2014,34(29): 5096-5102.(JIANG Hongde, REN Jing, LI Xueying, et al. Status and development trend of the heavy duty gas turbine[J].Proceedings of the CSEE,2014,34(29): 5096-5102. (in Chinese))
    [3]张效伟, 朱惠人. 大型燃气涡轮叶片冷却技术[J]. 热能动力工程, 2008,23(1): 1-6.(ZHANG Xiaowei, ZHU Huiren. Blade cooling technology of heavy-duty gas turbines[J].Journal of Engineering for Thermal Energy and Power,2008,23(1): 1-6. (in Chinese))
    [4]CARNEGIE W. Vibrations of rotating cantilever blading: theoretical approaches to the frequency problem based on energy methods[J].Journal of Mechanical Engineering Science,1959,1: 235-240.
    [5]LINER H S. The natural frequencies and modes of vibration of a rotating beam[J].The Aeronautical Journal,1954,58(525): 652-654.
    [6]PORAT I, NIV M. Vibration of a rotating shaft by the “Timoshenko beam” theory[J].Israel Journal of Technology,1971,9(5): 535-546.
    [7]MCIVER D B. Hamilton’s principle for systems of changing mass[J].Journal of Engineering Mathematics,1973,7(3): 249-261.
    [8]HODGES D H, RUTKOWSKI M J. Free-vibration analysis of rotating beams by a variable-order finite-element method[J].AIAA Journal,1981,19(11): 1459-1466.
    [9]PADOUSSIS M P, ISSID N T. Dynamic stability of pipes conveying fluid[J].Journal of Sound and Vibration,1974,33(3): 267-294.
    [10]BENJAMIN T B. Dynamics of a system of articulated pipes conveying fluid-Ⅰ: theory[J].Proceedings of the Royal Society A,1961,261(1307): 457-486.
    [11]YANG J B, JIANG L J, CHEN D C. Dynamic modelling and control of a rotating Euler-Bernoulli beam[J].Journal of Sound and Vibration,2004,274(3/4/5): 863-875.
    [12]PANUSSIS D A, DIMAROGONAS A D. Linear in-plane and out-of-plane lateral vibrations of a horizontally rotating fluid-tube cantilever[J].Journal of Fluids and Structures,2000,14(1): 1-24.
    [13]易浩然, 周坤, 代胡亮, 等. 含集中质量悬臂输流管的稳定性与模态演化特性研究[J]. 力学学报, 2020,52(6): 1800-1810.(YI Haoran, ZHOU Kun, DAI Huliang, et al. Stability and mode evolution characteristics of a cantilevered fluid-conveying pipe attached with the lumped mass[J].Chinese Journal of Theoretical and Applied Mechanics,2020,52(6): 1800-1810. (in Chinese))
    [14]赵桂欣, 孟帅, 车驰东, 等. 解释自由端含集中质量悬臂输流管固有频率计算悖论[J]. 振动与冲击, 2023,42(7): 18-24.(ZHAO Guixin, MENG Shuai, CHE Chidong, et al. Explanation for paradox in natural frequency calculation of cantilever fluid-conveying pipe system with an end-mass[J].Journal of Vibration and Shock,2023,42(7): 18-24. (in Chinese))
    [15]徐鉴, 杨前彪. 流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ)[J]. 应用数学和力学, 2006,27(7): 825-832.(XU Jian, YANG Qianbiao. Flow-induced internal resonances and mode exchange in horizontal cantilevered pipe conveying fluid(Ⅱ)[J].Applied Mathematics and Mechanics,2006,27(7): 825-832. (in Chinese))
    [16]黄慧春, 张艳雷, 陈立群. 超临界下受迫输液管2∶1内共振的响应特性[J]. 噪声与振动控制, 2014,34(2): 8-11.(HUANG Huichun, ZHANG Yanlei, CHEN Liqun. Resonance analysis of a forced fluid-conveying pipe with 2∶1 internal resonances under supercritical fluid velocity[J].Noise and Vibration Control,2014,34(2): 8-11. (in Chinese))
    [17]CHEN L Q, ZHANG Y L, ZHANG G C, et al. Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed[J].International Journal of Non-Linear Mechanics,2014,58: 11-21.
    [18]张国策, 丁虎, 陈立群. 复模态分析超临界轴向运动梁横向非线性振动[J]. 动力学与控制学报, 2015,13(4): 283-287.(ZHANG Guoce, DING Hu, CHEN Liqun. Complex modal analysis of transversally non-linear vibration for supercritically axially moving beams[J].Journal of Dynamics and Control,2015,13(4): 283-287. (in Chinese))
    [19]张凯凯, 谭霞, 丁虎, 等. 超临界输流管道3∶1内共振下参激振动响应[J]. 应用数学和力学, 2018,39(11): 1227-1235.(ZHANG Kaikai, TAN Xia, DING Hu, et al. Parametric vibration responses of supercritical fluid-conveying pipes in 3∶1 internal resonance[J].Applied Mathematics and Mechanics,2018,39(11): 1227-1235. (in Chinese))
    [20]LIANG F, YANG X D, QIAN Y J, et al. Transverse free vibration and stability analysis of spinning pipes conveying fluid[J].International Journal of Mechanical Sciences,2018,137: 195-204.
    [21]YOON H I, SON I S. Dynamic response of rotating flexible cantilever pipe conveying fluid with tip mass[J].International Journal of Mechanical Sciences,2007,49(7): 878-887.
    [22]BAHAADINI R, SAIDI A R, HOSSEINI M. Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes[J].Acta Mechanica,2018,229(12): 5013-5029.
    [23]张博, 史天姿, 张贻林, 等. 旋转输液管动力稳定性理论分析[J]. 应用数学和力学, 2022,43(2): 166-175.(ZHANG Bo, SHI Tianzi, ZHANG Yilin, et al. Theoretical analysis on dynamic stability of rotating pipes conveying fluid[J].Applied Mathematics and Mechanics,2022,43(2): 166-175. (in Chinese))
    [24]杨佳丽, 杨虹, 李伟. 旋转Timoshenko输流管道的固有频率和稳定性分析[J]. 动力学与控制学报, 2023,21(2): 58-65.(YANG Jiali, YANG Hong, LI Wei. Natural frequency and stability analysis of rotating Timoshenko pipe conveying fluid[J].Journal of Dynamics and Control,2023,21(2): 58-65. (in Chinese))
    [25]马永奇, 沈义俊, 尤云祥, 等. 附加重块和弹簧刚度对垂直悬臂输流管动力学稳定性的影响研究[J]. 中国造船, 2023,64(3): 212-222.(MA Yongqi, SHEN Yijun, YOU Yunxiang, et al. Dynamic stability analysis with additional masses and springs stiffness in vertical cantilevered pipes conveying fluid[J].Shipbuilding of China,2023,64(3): 212-222. (in Chinese))
    [26]郭勇. 具有非对称横截面的悬臂输流管道的非线性振动特征[J]. 动力学与控制学报, 2023,21(11): 81-94.(GUO Yong. Nonlinear vibration characteristics of cantilevered fluid-conveying pipe with asymmetric cross-section[J].Journal of Dynamics and Control,2023,21(11): 81-94. (in Chinese))
    [27]唐冶, 高传康, 丁千, 等. 输流管道动力学与控制的最新进展[J]. 动力学与控制学报, 2023,21(6): 18-30.(TANG Ye, GAO Chuankang, DING Qian, et al. Review on dynamic and control of pipes conveying fluidan[J].Journal of Dynamics and Control,2023,21(6): 18-30. (in Chinese))
    [28]BALKAYA M, KAYA M O, SAGLAMER A. Free transverse vibrations of an elastically connected simply supported twin pipe system[J].Structural Engineering and Mechanics,2010,34(5): 549-561.
    [29]WANG P F, ZHAO W S, JIANG J, et al. Experimental and numerical investigations of flow-induced vibration of tube arrays subjected to cross flow[J].International Journal of Pressure Vessels and Piping,2019,176: 103956.
    [30]GAO P, ZHANG Y, LIU X, et al. Vibration analysis of aero parallel-pipeline systems based on a novel reduced order modeling method[J].Journal of Mechanical Science and Technology,2020,34(8): 3137-3146.
    [31]GUO X M, GE H, XIAO C L, et al. Vibration transmission characteristics analysis of the parallel fluid-conveying pipes system: numerical and experimental studies[J].Mechanical Systems and Signal Processing,2022,177: 109180.
    [32]GUO X M, XIAO C L, MA H, et al. Improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling[J].Applied Mathematics and Mechanics(English Edition),2022,43(8): 1269-1288.
    [33]张博, 郑昊楷, 孙东生, 等. 双通道旋转输流管临界流速和振动模态分析[J]. 力学学报, 2023,55(1): 182-191.(ZHANG Bo, ZHENG Haokai, SUN Dongsheng, et al. Theoretical analysis on the critical flow velocity and vibration mode of a twin-channel rotating pipe[J].Chinese Journal of Theoretical and Applied Mechanics,2023,55(1): 182-191. (in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (21) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return