Citation: | LIU Jiahao, HENG Supei, HEN Mengying, GUO Yilin. Low-Dissipation 5th-Order Entropy Stable Schemes[J]. Applied Mathematics and Mechanics, 2025, 46(4): 528-541. doi: 10.21656/1000-0887.450091 |
[2]LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics,1994,115(1): 200-212.
|
SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics,1988,77(2): 439-471.
|
[3]JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics,1996,126(1): 202-228.
|
[4]TADMOR E. The numerical viscosity of entropy stable schemes for systems of conservation laws, Ⅰ[J]. Mathematics of Computation,1987,49(179): 91-103.
|
[5]ISMAIL F, ROE P L. Affordable, entropy-consistent Euler flux functions Ⅱ: entropy production at shocks[J]. Journal of Computational Physics,2009,228(15): 5410-5436.
|
[6]FJORDHOLM U S, MISHRA S, TADMOR E. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws[J]. SIAM Journal on Numerical Analysis,2012,50(2): 544-573.
|
[7]FJORDHOLM U S, RAY D. A sign preserving WENO reconstruction method[J]. Journal of Scientific Computing,2016,68: 42-63.
|
[8]BISWAS B, DUBEY R K. Low dissipative entropy stable schemes using third order WENO and TVD reconstructions[J]. Advances in Computational Mathematics,2018,44: 1153-1181.
|
[9]郑素佩, 赵青宇, 封建湖. 基于WENO重构保号的四阶熵稳定格式[J]. 浙江大学学报(理学版), 2022,49(3): 329-335.(ZHENG Supei, ZHAO Qingyu, FENG Jianhu. The fourth order entropy stable scheme based on sign-preserving WENO reconstruction[J]. Journal of Zhejiang University (Science Edition), 2022,49(3): 329-335. (in Chinese))
|
[10]郑素佩, 徐霞, 封建湖, 等. 高阶保号熵稳定格式[J]. 数学物理学报, 2021,41(5): 1296-1310.(ZHENG Supei, XU Xia, FENG Jianhu, et al. High order sign preserving entropy stable schemes[J]. Acta Mathematica Scientia,2021,41(5): 1296-1310. (in Chinese))
|
[11]郑素佩, 建芒芒, 封建湖, 等. 保号WENO-AO型中心迎风格式[J]. 计算物理, 2022,39(6): 677-686.(ZHENG Supei, JIAN Mangmang, FENG Jianhu, et al. Sign preserving WENO-AO-type central upwind schemes[J]. Chinese Journal of Computational Physics,2022,39(6): 677-686. (in Chinese))
|
[12]张成治, 郑素佩, 陈雪, 等. 求解理想磁流体方程的四阶WENO型熵稳定格式[J]. 应用数学和力学, 2023,44(11): 1398-1412.(ZHANG Chengzhi, ZHENG Supei, CHEN Xue, et al. A 4th-order WENO-type entropy stable scheme for ideal magnetohydrodynamic equations[J]. Applied Mathematics and Mechanics,2023,44(11): 1398-1412. (in Chinese))
|
[13]FU L, HU X Y, ADAMS N A. A family of high-order targeted ENO schemes for compressible-fluid simulations[J]. Journal of Computational Physics,2016,305: 333-359.
|
[14]FU L. Review of the high-order TENO schemes for compressible gas dynamics and turbulence[J]. Archives of Computational Methods in Engineering,2023,30(4): 2493-2526.
|
[15]GOTTLIEB S, SHU C W, TADMOR E. Strong stability-preserving high-order time discretization methods[J]. SIAM Review,2001,43(1): 89-112.
|
[16]GEROLYMOS G A, SENECHAL D, VALLET I. Very-high-order WENO schemes[J]. Journal of Computational Physics,2009,228(23): 8481-8524.
|
[17]LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics,1954,7(1):159-193.
|
[18]LEFLOCH P G, MERCIER J M, ROHDE C. Fully discrete, entropy conservative schemes of arbitrary order[J]. SIAM Journal on Numerical Analysis,2002,40(5): 1968-1992.
|