Volume 46 Issue 4
Apr.  2025
Turn off MathJax
Article Contents
LIU Jiahao, HENG Supei, HEN Mengying, GUO Yilin. Low-Dissipation 5th-Order Entropy Stable Schemes[J]. Applied Mathematics and Mechanics, 2025, 46(4): 528-541. doi: 10.21656/1000-0887.450091
Citation: LIU Jiahao, HENG Supei, HEN Mengying, GUO Yilin. Low-Dissipation 5th-Order Entropy Stable Schemes[J]. Applied Mathematics and Mechanics, 2025, 46(4): 528-541. doi: 10.21656/1000-0887.450091

Low-Dissipation 5th-Order Entropy Stable Schemes

doi: 10.21656/1000-0887.450091
Funds:

The National Science Foundation of China(11971075)

  • Received Date: 2024-04-08
  • Rev Recd Date: 2024-09-27
  • Available Online: 2025-04-30
  • The existence of intermittent solutions to hyperbolic conservation law equations requires high accuracy and resolution of the numerical solution schemes. The entropy stable schemes constructed by Tadmor et al. has numerical solutions that converge to physically meaningful unique solutions, but with severe dissipation large smearing effects and only 1st-order spatial accuracy. Therefore, the TENO (targeted essentially non-oscillatory) reconstruction with low numerical dissipation was introduced into the TeCNO framework, and a low-dissipation 5th-order TENO-type entropy stable scheme was constructed. It was proved that the jumps of the reconstructed entropy variables at the cell interfaces satisfy the sign-preserving property and the entropy stability of the constructed schemes. Finally, the low numerical dissipation, high convergence order, high resolution and good numerical robustness of the 5th-order TENO-type entropy stable scheme, were verified through various numerical examples.
  • loading
  • [2]LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics,1994,115(1): 200-212.
    SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics,1988,77(2): 439-471.
    [3]JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics,1996,126(1): 202-228.
    [4]TADMOR E. The numerical viscosity of entropy stable schemes for systems of conservation laws, Ⅰ[J]. Mathematics of Computation,1987,49(179): 91-103.
    [5]ISMAIL F, ROE P L. Affordable, entropy-consistent Euler flux functions Ⅱ: entropy production at shocks[J]. Journal of Computational Physics,2009,228(15): 5410-5436.
    [6]FJORDHOLM U S, MISHRA S, TADMOR E. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws[J]. SIAM Journal on Numerical Analysis,2012,50(2): 544-573.
    [7]FJORDHOLM U S, RAY D. A sign preserving WENO reconstruction method[J]. Journal of Scientific Computing,2016,68: 42-63.
    [8]BISWAS B, DUBEY R K. Low dissipative entropy stable schemes using third order WENO and TVD reconstructions[J]. Advances in Computational Mathematics,2018,44: 1153-1181.
    [9]郑素佩, 赵青宇, 封建湖. 基于WENO重构保号的四阶熵稳定格式[J]. 浙江大学学报(理学版), 2022,49(3): 329-335.(ZHENG Supei, ZHAO Qingyu, FENG Jianhu. The fourth order entropy stable scheme based on sign-preserving WENO reconstruction[J]. Journal of Zhejiang University (Science Edition), 2022,49(3): 329-335. (in Chinese))
    [10]郑素佩, 徐霞, 封建湖, 等. 高阶保号熵稳定格式[J]. 数学物理学报, 2021,41(5): 1296-1310.(ZHENG Supei, XU Xia, FENG Jianhu, et al. High order sign preserving entropy stable schemes[J]. Acta Mathematica Scientia,2021,41(5): 1296-1310. (in Chinese))
    [11]郑素佩, 建芒芒, 封建湖, 等. 保号WENO-AO型中心迎风格式[J]. 计算物理, 2022,39(6): 677-686.(ZHENG Supei, JIAN Mangmang, FENG Jianhu, et al. Sign preserving WENO-AO-type central upwind schemes[J]. Chinese Journal of Computational Physics,2022,39(6): 677-686. (in Chinese))
    [12]张成治, 郑素佩, 陈雪, 等. 求解理想磁流体方程的四阶WENO型熵稳定格式[J]. 应用数学和力学, 2023,44(11): 1398-1412.(ZHANG Chengzhi, ZHENG Supei, CHEN Xue, et al. A 4th-order WENO-type entropy stable scheme for ideal magnetohydrodynamic equations[J]. Applied Mathematics and Mechanics,2023,44(11): 1398-1412. (in Chinese))
    [13]FU L, HU X Y, ADAMS N A. A family of high-order targeted ENO schemes for compressible-fluid simulations[J]. Journal of Computational Physics,2016,305: 333-359.
    [14]FU L. Review of the high-order TENO schemes for compressible gas dynamics and turbulence[J]. Archives of Computational Methods in Engineering,2023,30(4): 2493-2526.
    [15]GOTTLIEB S, SHU C W, TADMOR E. Strong stability-preserving high-order time discretization methods[J]. SIAM Review,2001,43(1): 89-112.
    [16]GEROLYMOS G A, SENECHAL D, VALLET I. Very-high-order WENO schemes[J]. Journal of Computational Physics,2009,228(23): 8481-8524.
    [17]LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics,1954,7(1):159-193.
    [18]LEFLOCH P G, MERCIER J M, ROHDE C. Fully discrete, entropy conservative schemes of arbitrary order[J]. SIAM Journal on Numerical Analysis,2002,40(5): 1968-1992.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (28) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return