Volume 46 Issue 9
Sep.  2025
Turn off MathJax
Article Contents
XIA Ganlin, MENG Zeng, WU Zhigen. An Efficient Hybrid Structural Optimization Design Method for Bolt-Connected Stiffened Panels[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1108-1118. doi: 10.21656/1000-0887.450185
Citation: XIA Ganlin, MENG Zeng, WU Zhigen. An Efficient Hybrid Structural Optimization Design Method for Bolt-Connected Stiffened Panels[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1108-1118. doi: 10.21656/1000-0887.450185

An Efficient Hybrid Structural Optimization Design Method for Bolt-Connected Stiffened Panels

doi: 10.21656/1000-0887.450185
Funds:

The National Science Foundation of China(12372195;11572108)

  • Received Date: 2024-06-24
  • Rev Recd Date: 2024-09-26
  • Available Online: 2025-10-17
  • To address the modeling complexity and large computational load in optimizing the buckling performance of bolted stiffened panels, a hybrid optimization strategy based on the Kriging surrogate model and the multi-point constraint (MPC) approximation model was proposed. Firstly, the MPC connection was utilized to establish an approximate stiffened panel model for the finite element buckling analysis, to replace the analysis of many high-precision stiffened panel models in the experimental design. Then, a prediction function for MPC parameters was built with the Kriging surrogate model, and the sample points of the surrogate model were updated during optimization iterations to ensure the computational accuracy of the approximation model. Finally, based on the established MPC approximation model, the lightweight design and the performance optimization design of bolted stiffened panels were conducted. The numerical results demonstrate that, the proposed hybrid optimization method improves the computational efficiency by approximate 10 times compared with traditional optimization methods. In the lightweight design, the weight of the stiffened panel structure reduces by 26.18% while maintaining the same buckling capacity. In the performance optimization design, the ultimate buckling capacity increases by 23.67%.without significant change in the structural mass.
  • loading
  • [2]白瑞祥, 陈浩然. 含分层损伤复合材料加筋层合板的分层扩展研究[J]. 应用数学和力学, 2004,25(4): 368-378. (BAI Ruixiang, CHEN Haoran. Numerical analysis of delamination growth for stiffened composite laminated plates[J]. Applied Mathematics and Mechanics,2004,25(4): 368-378. (in Chinese))
    飞机设计手册总编委会. 载荷、强度和刚度[M]. 飞机设计手册, 9册. 北京: 航空工业出版社, 2005. (General Editorial Committee of the Aircraft Design Handbook. Load, Strength and Stiffness[M]. Aircraft Design Handbook,Vol9. Beijing: Aviation Industry Press, 2005. (in Chinese))
    [3]VENKATARAMAN S, HAFTKA R T. Optimization of composite panels: a review[C]//American Society for Composites,1999: 479-488.
    [4]LANZI L, GIAVOTTO V. Post-buckling optimization of composite stiffened panels: computations and experiments[J]. Composite Structures,2006,73(2): 208-220.
    [5]张涛, 刘土光, 熊有伦, 等. 流固冲击下加筋板的非线性动态屈曲[J]. 应用数学和力学, 2004,25(7): 755-762. (ZHANG Tao, LIU Tuguang, XIONG Youlun, et al. Dynamic buckling of stiffened plates under fluid-solid impact load[J]. Applied Mathematics and Mechanics,2004,25(7): 755-762. (in Chinese))
    [6]NI X Y, PRUSTY B G, HELLIER A K. Buckling and post-buckling of isotropic and composite stiffened panels: a review on optimisation (2000—2015)[J]. International Journal of Maritime Engineering,2016,158(A3): A251-A267.
    [7]KIM D K, LIM H L, YU S Y. A technical review on ultimate strength prediction of stiffened panels in axial compression[J]. Ocean Engineering,2018,170: 392-406.
    [8]王博, 郝鹏, 田阔. 加筋薄壳结构分析与优化设计研究进展[J]. 计算力学学报, 2019,36(1): 1-12. (WANG Bo, HAO Peng, TIAN Kuo. Recent advances in structural analysis and optimization of stiffened shells[J]. Chinese Journal of Computational Mechanics,2019,36(1): 1-12. (in Chinese))
    [9]刘宸宇, 骆烜赫, 刘康翔, 等. 基于平铺刚度法的弧形加筋板的轻量化设计[J]. 应用数学和力学, 2023,44(8): 953-964. (LIU Chenyu, LUO Xuanhe, LIU Kangxiang, et al. Lightweight design of arc rib stiffened plates based on the smeared stiffener method[J]. Applied Mathematics and Mechanics,2023,44(8): 953-964. (in Chinese))
    [10]HAO P, LIU D, LIU H, et al. Intelligent optimum design of large-scale gradual-stiffness stiffened panelsvia multi-level dimension reduction[J]. Computer Methods in Applied Mechanics and Engineering,2024,421: 116759.
    [11]施利娟, 杨平. 高速船铝合金带筋板的力学性能优化设计[J]. 船海工程, 2011,40(2): 36-39. (SHI Lijuan, YANG Ping. Optimum design of mechanical properties of aluminum sheets-with-ribs of high speed ships[J]. Ship & Ocean Engineering,2011,40(2): 36-39. (in Chinese))
    [12]郝鹏, 王博, 李刚, 等. 基于代理模型和等效刚度模型的加筋柱壳混合优化设计[J]. 计算力学学报, 2012,29(4): 481-486. (HAO Peng, WANG Bo, LI Gang, et al. Hybrid optimization of grid-stiffened cylinder based on surrogate model and smeared stiffener model[J]. Chinese Journal of Computational Mechanics,2012,29(4): 481-486. (in Chinese))
    [13]张柱国, 姚卫星, 刘克龙. 基于进化Kriging模型的金属加筋板结构布局优化方法[J]. 南京航空航天大学学报, 2008,40(4): 497-500. (ZHANG Zhuguo, YAO Weixing, LIU Kelong. Configuration optimization method for metallic stiffened panel structure based on updated Kriging model[J]. Journal of Nanjing University of Aeronautics & Astronautics,2008,40(4): 497-500. (in Chinese))
    [14]时光辉, 贾宜播, 郝文宇, 等. 基于数据驱动的舵面结构优化设计[J]. 力学学报, 2023,55(11): 2577-2587. (SHI Guanghui, JIA Yibo, HAO Wenyu, WU Wenhua, LI Qiang, LIN Ye, DU Zongliang. Optimal design of rudder structures based on data-driven method[J]. Chinese Journal of Mechanical Mechanics,2023,55(11): 2577-2587. (in Chinese))
    [15]KAPANIA R, MULANI S, TAMIJANI A Y, et al. EBF3PanelOpt: a computational design environment for panels fabricated by additive manufacturing[C]//51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Texas, 2013: AIAA2013-212.
    [16]赵振, 刘才山, 陈滨, 等. 薄壁加筋肋圆柱壳稳定性分析的参数化研究[J]. 力学与实践, 2004,26(2): 17-21. (ZHAO Zhen, LIU Caishan, CHEN Bin, et al. Parameterization study of orthogrid stiffened cylinder shells[J]. Mechanics and Engineering,2004,26(2): 17-21. (in Chinese))
    [17]TIAN K, WANG B, ZHANG K, et al. Tailoring the optimal load-carrying efficiency of hierarchical stiffened shells by competitive sampling[J]. Thin-Walled Structures,2018,133: 216-225.
    [18]中国航空研究院. 复合材料连接手册[M]. 北京: 航空工业出版社, 1994. (Chinese Aeronautical Establishment. Handbook of Joint for Composite Materials[M]. Beijing: Aviation Industry Press, 1994. (in Chinese))
    [19]MOU H, XIE J, FENG Z. Research status and future development of crashworthiness of civil aircraft fuselage structures: an overview[J]. Progress in Aerospace Sciences,2020,119: 100644.
    [20]MCCARTHY M A, MCCARTHY C T, LAWLOR V P, et al. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints, part Ⅰ: model development and validation[J]. Composite Structures,2005,71(2): 140-158.
    [21]GRAY P J, MCCARTHY C T. A global bolted joint model for finite element analysis of load distributions in multi-bolt composite joints[J]. Composites (Part B): Engineering,2010,41(4): 317-325.
    [22]刘建华. 轴向激励下螺栓连接结构的松动机理研究[D]. 成都: 西南交通大学, 2016. (LIU Jianhua. Research on the self-loosening mechanism of bolted joints under axial excitation[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese))
    [23]MATHAN G, PRASAD N S. Study of dynamic response of piping system with gasketed flanged joints using finite element analysis[J]. International Journal of Pressure Vessels and Piping,2012,89: 28-32.
    [24]AHMADIAN H, NOURMOHAMMADI M. Tool point dynamics prediction by a three-component model utilizing distributed joint interfaces[J]. International Journal of Machine Tools and Manufacture,2010,50(11): 998-1005.
    [25]万春华, 段世慧, 吴存利. 加筋结构后屈曲有限元建模方法研究[J]. 机械科学与技术, 2015,34(5): 795-798. (WAN Chunhua, DUAN Shihui, WU Cunli. Study on the finite element modeling for post-buckling analysis of the stiffened structure[J]. Mechanical Science and Technology for Aerospace Engineering,2015,34(5): 795-798. (in Chinese))
    [26]韩旭, 雷磊, 袁伟, 等. 基于等效模型的帽型复合材料加筋壁板优化设计[J]. 材料工程, 2009,37(S2): 173-178. (HAN Xu, LEI Lei, YUAN Wei, et al. Optimization of the composite hat-stiffened panel based on equivalent model[J]. Journal of Materials Engineering,2009,37(S2): 173-178. (in Chinese))
    [27]L Z Y, LU Z Z, WANG P. A new learning function for Kriging and its applications to solve reliability problems in engineering[J]. Computers & Mathematics With Applications,2015,70(5): 1182-1197.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (28) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return