Volume 46 Issue 4
Apr.  2025
Turn off MathJax
Article Contents
HE Yu, XIA Yuanmei, GUO Hui. Robust Scalarization of a Class of Uncertain Multi-Objective Optimization Problems[J]. Applied Mathematics and Mechanics, 2025, 46(4): 542-550. doi: 10.21656/1000-0887.450194
Citation: HE Yu, XIA Yuanmei, GUO Hui. Robust Scalarization of a Class of Uncertain Multi-Objective Optimization Problems[J]. Applied Mathematics and Mechanics, 2025, 46(4): 542-550. doi: 10.21656/1000-0887.450194

Robust Scalarization of a Class of Uncertain Multi-Objective Optimization Problems

doi: 10.21656/1000-0887.450194
Funds:

The National Science Foundation of China(12171063;11991024;12101096)

  • Received Date: 2024-07-02
  • Rev Recd Date: 2024-10-22
  • Available Online: 2025-04-30
  • Scalarization methods play an important role in solving uncertain multi-objective optimization problems. Firstly, based on the idea of robust optimization, a robust Pascoletti-Serafini scalarization for uncertain multi-objective optimization problems was proposed, and the scalarization properties of robust weakly efficient solutions and robust efficient solutions were established. Furthermore, a robust flexible Pascoletti-Serafini scalarization method for uncertain multi-objective optimization problems was proposed, and the scalarization properties of robust weakly efficient solutions, robust efficient solutions, and robust properly efficient solutions were established. Moreover, some examples were provided to illustrate the main results.
  • loading
  • [2]杜宏宇, 张宏宇, 陈波, 等. 计及多种需求响应资源的虚拟电厂运行机制及控制策略优化[J]. 电工电能新技术, 2023,42(7): 77-86. (DU Hongyu, ZHANG Hongyu, CHEN Bo, et al. Operation mechanism and control strategy optimization of virtual power plant considering multiple DR resources[J].Advanced Technology of Electrical Engineering and Energy,2023,42(7): 77-86. (in Chinese))
    ALIZADEH B, JADID S. Uncertainty handling in power system expansion planning under a robust multi-objective framework[J].IET Generation,Transmission & Distribution,2014,8(12): 2012-2026.
    [3]严浩源, 赵天阳, 刘晓川, 等. 计及多重阻塞的电动汽车移动储能特性建模[J]. 应用数学和力学, 2022,43(11): 1214-1226. (YAN Haoyuan, ZHAO Tianyang, LIU Xiaochuan, et al. Modeling of electric vehicles as mobile energy storage systems considering multiple congestions[J].Applied Mathematics and Mechanics,2022,43(11): 1214-1226. (in Chinese))
    [4]FLIEGE J, WERNER R. Robust multiobjective optimization & applications in portfolio optimization[J].European Journal of Operational Research,2014,234(2): 422-433.
    [5]KUROIWA D, LEE G M. On robust multiobjective optimization[J].Journal of Nonlinear and Convex Analysis,2012,40(2): 305-317.
    [6]〖JP2〗ZAMANI M, SOLEIMANI-DAMANEH M, KABGANI A. Robustness in nonsmooth nonlinear multi-objective programming[J].European Journal of Operational Research,2015,247(2): 370-378.
    [7]EHRGOTT M, IDE J, SCHBEL A. Minmax robustness for multi-objective optimization problems[J].European Journal of Operational Research,2014,239(1): 17-31.
    [8]GASS S, SAATY T. The computational algorithm for the parametric objective function[J].Naval Research Logistics Quarterly,1955,2(1/2): 39-45.
    [9]HAIMES Y Y, WISMER D A, LASDON L S. On a bicriterion formulation of the problems of integrated system identification and system optimization[J].IEEE Transactions on Systems,Man,and Cybernetics,1971,1(3): 296-297.
    [10]张晓青, 赵克全. 一类鲁棒多目标优化问题的标量化性质[J]. 重庆师范大学学报(自然科学版), 2018,35(2): 16-20. (ZHANG Xiaoqing, ZHAO Kequan. Scalarization characterizations for a class of robust multi-objective optimization problems[J].Journal of Chongqing Normal University (Natural Science), 2018,35(2): 16-20. (in Chinese))
    [11]刘浩洋, 户将, 李勇锋, 等. 最优化: 建模、 算法与理论[M]. 北京: 高等教育出版社, 2020.(LIU Haoyang, HU Jiang, LI Yongfeng, et al.Optimization: Modeling, Algorithm and Theory[M]. Beijing: Higher Education Press, 2020. (in Chinese))
    [12]HOUSKA B, FRASCH J, DIEHL M. An augmented Lagrangian based algorithm for distributed non-convex optimization[J].SIAM Journal on Optimization,2016,26(2): 1101-1127.
    [13]ZENG J, YIN W. On nonconvex decentralized gradient descent[J].IEEE Transactions on Signal Processing,2018,66(11): 2834-2848.
    [14]PASCOLETTI A, SERAFINI P. Scalarizing vector optimization problems[J].Journal of Optimization Theory and Applications,1984,42(4): 499-524.
    [15]EICHFELDER G. An adaptive scalarization method in multiobjective optimization[J].SIAM Journal on Optimization,2009,19(4): 1694-1718.
    [16]AKBARI F, GHAZNAVI M, KHORRAM E. A revised Pascoletti-Serafini scalarization method for multiobjective optimization problems[J].Journal of Optimization Theory and Applications,2018,178(2): 560-590.
    [17]夏远梅, 赵克全, 高英. 多目标优化的广义Pascoletti-Serafini标量化[J]. 中国科学: 数学, 2024,54(2): 231-244. (XIA Yuanmei, ZHAO Kequan, GAO Ying. Generalized Pascoletti-Serafini scalarization for multi-objectiveoptimization[J].Scientia Sinica:Mathematica,2024,54(2): 231-244. (in Chinese))
    [18]夏远梅, 赵克全. 多目标优化范数标量化模型最优值的误差估计[J]. 系统科学与数学, 2023,43(9): 2319-2327. (XIA Yuanmei, ZHAO Kequan. Error estimation of optimal value of norm scalarization model for multi-objective optimization problems[J].Journal of Systems Science and Mathematical Sciences,2023,43(9): 2319-2327. (in Chinese))
    [19]赵克全, 杨新民, 夏远梅. 多目标优化问题的完全标量化[J]. 中国科学: 数学, 2021,51(2): 411-424. (ZHAO Kequan, YANG Xinmin, XIA Yuanmei. Complete scalarization of multi-objective optimization problems[J].Scientia Sinica:Mathematica,2021,51(2): 411-424. (in Chinese))
    [20]夏远梅. 多目标优化问题的标量化方法及其在机器学习中的应用[D]. 上海: 上海大学, 2020. (XIA Yuanmei. Scalarization methods of multi-objective optimization problems and its applications in machine learning[D]. Shanghai: Shanghai University, 2020. (in Chinese))
    [21]林锉云, 董家礼. 多目标优化的方法与理论[M]. 长春: 吉林教育出版社, 1992. (LIN Cuoyun, DONG Jiali.Method and Theory of Multi-Objective Optimization[M]. Changchun: Jilin Education Press, 1992. (in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (25) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return