Volume 46 Issue 9
Sep.  2025
Turn off MathJax
Article Contents
LI Bin, WAN Zhanwei, GAO Xing, LI Shusen, BAI Yuchuan, LU Jun. Characteristics of Turbidity Currents in the Xiaolangdi Reservoir Considering Sediment Effective Power[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1218-1232. doi: 10.21656/1000-0887.450322
Citation: LI Bin, WAN Zhanwei, GAO Xing, LI Shusen, BAI Yuchuan, LU Jun. Characteristics of Turbidity Currents in the Xiaolangdi Reservoir Considering Sediment Effective Power[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1218-1232. doi: 10.21656/1000-0887.450322

Characteristics of Turbidity Currents in the Xiaolangdi Reservoir Considering Sediment Effective Power

doi: 10.21656/1000-0887.450322
Funds:

The National Science Foundation of China(51979185)

  • Received Date: 2024-12-02
  • Rev Recd Date: 2025-02-10
  • Available Online: 2025-10-17
  • Turbidity currents in reservoirs are significant for improving reservoir utilization efficiency, efficient sediment discharge, and extending the reservoir lifespan. They are also crucial in water and sediment regulation schemes for sediment-laden rivers. The governing equations for turbidity currents were established and the evolution characteristics of turbidity currents in the Xiaolangdi Reservoir were analyzed through integration of the effective suspension power theory and the self-similarity theory for turbidity currents. The results indicate that, the turbidity current in Xiaolangdi Reservoir exhibits 3 distinct evolutionary states: attenuation, self-suspension, and activation. During its longitudinal evolution, there exists a critical position x0c. Upstream of x0c,the turbidity current thickness, sediment concentration, and flow velocity exhibit minimal responses to changes in particle sizes, slopes, and resistance coefficients. Downstream of x0c,the turbidity current thickness increases rapidly with the rises in particle sizes, slopes, and resistance coefficients. An increase or decrease in particle sizes can cause the turbidity current to transition from the activation state to the attenuation or self-suspension state, respectively. When the slope exceeds the critical value, the turbidity current will transition to the activation state. When the resistance coefficient will surpass the critical resistance coefficient, and the turbidity current will gradually transition to the attenuation state, whereas a resistance coefficient below the critical value will make the turbidity current maintain in its original state. As the Richardson number decreases at the plunging point, the growth rate of the turbidity current thickness downstream of x0c will slow, the stability of the turbidity current will weaken, and the turbidity current will transition to the attenuation state. In the activation state, the flow velocity of the turbidity current will increase downstream of x0c.These findings provide a theoretical foundation for understanding the movement characteristics of reservoir turbidity currents and offer theoretical support for developing regulation schemes during water and sediment management in sediment-laden river reservoirs.
  • loading
  • 张燕, 王道增, 樊靖郁. 流动环境中高浓度射流扩散实验研究[J]. 应用数学和力学, 2002,23(12): 1276-1282.

    (ZHANG Yan, WANG Daozeng, FAN Jingyu. Experimental investigations on diffusion characteristics of high concentration jets in environmental currents[J].Applied Mathematics and Mechanics,2002,23(12): 1276-1282. (in Chinese))
    [2]林建忠, 周泽宣. 含高浓度悬浮固粒运动射流稳定性研究[J]. 应用数学和力学, 2000,21(12): 1255-1264.(LIN Jianzhong, ZHOU Zexuan. Research on stability of moving jet containing dense suspended solid particles[J].Applied Mathematics and Mechanics,2000,21(12): 1255-1264. (in Chinese))
    [3]周泽宣, TAN S K, 林建忠. 含悬浮固粒射流界面稳定性研究[J]. 应用数学和力学, 2000,21(7): 669-674.(ZHOU Zexuan, TAN S K, LIN Jianzhong. Research on stability of interface of jet containing suspended solid particles[J].Applied Mathematics and Mechanics,2000,21(7): 669-674. (in Chinese))
    [4]白玉川, 辛玮琰, 徐海珏. 三角洲初始段射流边界层相似解求解[J]. 应用数学和力学, 2020,41(9): 1011-1025.(BAI Yuchuan, XIN Weiyan, XU Haijue. Similarity solution of jet boundary layer for the initial segment of a delta[J].Applied Mathematics and Mechanics,2020,41(9): 1011-1025. (in Chinese))
    [5]章若茵, 吴保生. 水库异重流的三维数值模拟及影响因素分析[J]. 水利学报, 2020,51(6): 715-726.(ZHANG Ruoyin, WU Baosheng. Three-dimensional numerical simulation of density current on a slope and its influencing factors[J].Journal of Hydraulic Engineering,2020,51(6): 715-726. (in Chinese))
    [6]张俊华, 马怀宝, 夏军强, 等. 小浪底水库异重流高效输沙理论与调控[J]. 水利学报, 2018,49(1): 62-71.(ZHANG Junhua, MA Huaibao, XIA Junqiang, et al. Theory and regulation of sediment turbidity current venting with high efficiency in Xiaolangdi Reservoir[J].Journal of Hydraulic Engineering,2018,49(1): 62-71. (in Chinese))
    [7]夏润亮, 李涛, 余欣, 等. 小浪底水库“腾库迎洪” 期异重流形成分析[J]. 水科学进展, 2020,31(2): 184-193.(XIA Runliang, LI Tao, YU Xin, et al. Analysis of the formation of density current in the period of discharging before flood in Xiaolangdi Reservoir[J].Advances in Water Science,2020,31(2): 184-193. (in Chinese))
    [8]张俊华, 李涛, 马怀宝. 小浪底水库调水调沙研究新进展[J]. 泥沙研究, 2016(2): 68-75.(ZHANG Junhua, LI Tao, MA Huaibao. Proceedings on water and sediment regulation in Xiaolangdi Reservoir[J].Journal of Sediment Research,2016(2): 68-75. (in Chinese))
    [9]张金良, 鲁俊, 韦诗涛, 等. 小浪底水库调水调沙后续动力不足原因和对策[J]. 人民黄河, 2021,43(1): 5-9.(ZHANG Jinliang, LU Jun, WEI Shitao, et al. Causes and countermeasures of insufficient follow-up power for waterand sediment regulation in Xiaolangdi Reservoir[J].Yellow River,2021,43(1): 5-9. (in Chinese))
    [10]韩其为. 水库淤积[M]. 北京: 科学出版社, 2003.(HAN Qiwei.Reservoir Sedimentation[M]. Beijing: Science Press, 2003. (in Chinese))
    [11]朱鹏程. 异重流的形成与衰减[J]. 水利学报, 1981(5): 52-59.(ZHU Pengcheng. Formation and attenuation of turbidity currents [J].Journal of Hydraulic Engineering,1981(5): 52-59. (in Chinese))
    [12]MIDDLETON G V. Sediment deposition from turbidity currents[J].Annual Review of Earth and Planetary Sciences,1993,21: 89-114.
    [13]曹如轩, 任晓枫, 卢文新. 高含沙异重流的形成与持续条件分析[J]. 泥沙研究, 1984(2): 1-10.(CAO Ruxuan, REN Xiaofeng, LU Wenxin. Analysis of conditions of formation and continuation of motion of density current with hyperconcentration[J].Journal of Sediment Research,1984(2): 1-10. (in Chinese))
    [14]范家骅, 祁伟, 戴清. 异重流潜入现象探讨Ⅰ: 水槽实验与理论分析成果回顾[J]. 水利学报, 2018,49(4): 404-418.(FAN Jiahua, QI Wei, DAI Qing. Investigation of density current plunging Ⅰ: review of previous flume experiment works and theoretical analysis[J].Journal of Hydraulic Engineering,2018,49(4): 404-418. (in Chinese))
    [15]钱宁, 范家骅, 曹俊, 等. 异重流[M]. 北京: 水利出版社, 1957. (QIAN Ning, FAN Jiahua, CAO Jun, et al.Turbidity[M]. Beijing: Water Resources Press, 1957. (in Chinese))
    [16]李涛, 夏军强, 张俊华, 等. 水库异重流潜入点流速分布及其判别式改进[J]. 工程科学与技术, 2017,49(2): 62-68.(LI Tao, XIA Junqiang, ZHANG Junhua, et al. Vertical velocity distribution and improved discriminant formula of turbidity current at the plunging point in reservoir[J].Advanced Engineering Sciences,2017,49(2): 62-68. (in Chinese))
    [17]PARKER G, GARCIA M, FUKUSHIMA Y, et al. Experiments on turbidity currents over an erodible bed[J].Journal of Hydraulic Research,1987,25(1): 123-147.
    [18]PARKER G, FUKUSHIMA Y, PANTIN H M. Self-accelerating turbidity currents[J].Journal of Fluid Mechanics,1986,171: 145-181.
    [19]WANG S Y. The principle and application of sediment effective power[J].Journal of Hydraulic Engineering,1984,110(2): 97-107.
    [20]王尚毅. 论挟沙明流中泥沙的有效悬浮功概念兼论区分造床质与非造床质的标准问题[J]. 科学通报, 1979,24(9): 410-413.(WANG Shangyi. On the concept of sediment effective power in suspended-laden flows and the standard distinction between bed-material load and wash load[J].Chinese Science Bulletin,1979,24(9): 410-413. (in Chinese))
    [21]BAGNOLD R A. Auto-suspension of transported sediment; turbidity currents[J].Proceedings of the Royal Society of London (Series A): Mathematical and Physical Sciences,1962,265(1322): 315-319.
    [22]XIE J, HU P, ZHU C, et al. Turbidity currents propagating down an inclined slope: particle auto-suspension[J].Journal of Fluid Mechanics,2023,954: A44.
    [23]AKIYAMA J, STEFAN H. Turbidity current with erosion and deposition[J].Journal of Hydraulic Engineering,1985,111(12): 1473-1496.
    [24]CANTERO-CHINCHILLA F N, DEY S, CASTRO-ORGAZ O, et al. Hydrodynamic analysis of fully developed turbidity currents over plane beds based on self-preserving velocity and concentration distributions[J].Journal of Geophysical Research:Earth Surface,2015,120(10): 2176-2199.
    [25]ISLAM M A, IMRAN J. Vertical structure of continuous release saline and turbidity currents[J].Journal of Geophysical Research:Oceans,2010,115(C8): C08025.
    [26]GRAF W H, ALTINAKAR M S.Fluvial Hydraulics: Flow and Transport Processes in Channels of Simple Geometry[M]. New York: Wiley, 1998.
    [27]MAHATO R K, DEY S, ALI S Z. Hydrodynamics of turbidity currents evolving over a plane bed[J].Physics of Fluids,2023,35(10): 105137.
    [28]JIMNEZ J A, MADSEN O S. A simple formula to estimate settling velocity of natural sediments[J].Journal of Waterway,Port,Coastal,and Ocean Engineering,2003,129(2): 70-78.
    [29]TALLING P J, CARTIGNY M J B, POPE E, et al.Detailed monitoring reveals the nature of submarine turbidity currents[J].Nature Reviews Earth & Environment,2023,4: 642-658.
    [30]江肖鹏, 王远见, 杨飞, 等. 水沙自加速异重流水槽试验研究[J]. 人民黄河, 2023,45(2): 38-41.(JIANG Xiaopeng, WANG Yuanjian, YANG Fei, et al. Experimental study on self-accelerating turbidity currents in flume[J].Yellow River,2023,45(2): 38-41. (in Chinese))
    [31]鲁俊, 朱呈浩, 陈翠霞, 等. 古贤和小浪底水库联合调水调沙运用方式研究[J]. 人民黄河, 2024,46(12): 31-36.(LU Jun, ZHU Chenghao, CHEN Cuixia, et al. Research on the joint water and sediment regulation operation mode of Guxian Reservoir and Xiaolangdi Reservoir[J].Yellow River,2024,46(12): 31-36. (in Chinese))
    [32]李宪栋, 刘士祥, 刘哲杰. 小浪底水库2021—2023年排沙过程分析[J]. 人民黄河, 2024,46(S1): 11-12.(LI Xiandong, LIU Shixiang, LIU Zhejie. Analysis of sedimentation process in Xiaolangdi Reservoir from 2021 to 2023[J].Yellow River,2024,46(S1): 11-12. (in Chinese))
    [33]夏军强, 张贤梓依, 王增辉, 等. 小浪底水库汛前调水调沙模拟与综合效益评估[J]. 湖泊科学, 2024,36(5): 1550-1561.(XIA Junqiang, ZHANG Xianziyi, WANG Zenghui, et al. Modelling of the flow and sediment regulation processes before flood seasons in the Xiaolangdi Reservoir and evaluation of comprehensive benefits[J].Journal of Lake Sciences,2024,36(5): 1550-1561. (in Chinese))
    [34]王婷, 赵东晓, 马怀宝, 等. 小浪底水库减淤调度模式探讨[J]. 人民黄河, 2024,46(8): 26-30.(WANG Ting, ZHAO Dongxiao, MA Huaibao, et al. Discussion on the operational mode of sedimentation reduction of Xiaolangdi Reservoir[J].Yellow River,2024,46(8): 26-30. (in Chinese))
    [35]邵学军, 杨飞, 假冬冬, 等. 水库泥沙的高效输移机制及其动态调控[M]. 北京: 科学出版社, 2024.(SHAO Xuejun, YANG Fei, JIA Dongdong, et al.Efficient Transport Mechanism and Dynamic Regulation of Reservoir Sediments[M]. Beijing: Science Press, 2024. (in Chinese))
    [36]GWIAZDA R, PAULL C K, KIEFT B, et al. Near-bed structure of sediment gravity flows measured by motion-sensing “boulder-like” benthic event detectors (BEDs) in Monterey canyon[J].Journal of Geophysical Research:Earth Surface,2022,127(2): e2021JF006437.
    [37]MCARTHUR A D, TEK D E, POYATOS-MOR M, et al. Deep-ocean channel-wall collapse order of magnitude larger than any other documented[J].Communications Earth & Environment,2024,5: 143.
    [38]NORMANDEAU A, LAJEUNESSE P, GHIENNE J F, et al. Detailed seafloor imagery of turbidity current bedforms reveals new insight into fine-scale near-bed processes[J].Geophysical Research Letters,2022,49(11): e2021GL097389.
    [39]RIB M, MOUNTJOY J J, MITCHELL N, et al. New insights on gravity flow dynamics during submarine canyon flushing events[J].Geology,2025,53(1): 34-39.
    [40]温志超, 石林平, 黄哲, 等. 基于泥沙异重流稳定性与衰减过程的床面淤积特性研究[J]. 泥沙研究, 2024,49(3): 33-40.(WEN Zhichao, SHI Linping, HUANG Zhe, et al. Study on bed deposition characteristics based on the stability and decay processes of sediment density current[J].Journal of Sediment Research,2024,49(3): 33-40. (in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (23) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return