| Citation: | NIE Qianjun, LI Lianhe. Transverse Vibration of Functionally Graded Material Cylinder Bars Dipped in Fluid[J]. Applied Mathematics and Mechanics, 2026, 47(1): 46-56. doi: 10.21656/1000-0887.450327 |
| [1] |
LIU J, KE L L, WANG Y S, et al. Thermoelastic frictional contact of functionally graded materials with arbitrarily varying properties[J]. International Journal of Mechanical Sciences, 2012, 63(1): 86-98. doi: 10.1016/j.ijmecsci.2012.06.016
|
| [2] |
LEE H S, JEON K Y, KIM H Y, et al. Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications[J]. Journal of Materials Science, 2000, 35(24): 6231-6236. doi: 10.1023/A:1026749831726
|
| [3] |
LIU B, WEI W, GAN Y, et al. Preparation, mechanical properties and microstructure of TiB2 based ceramic cutting tool material toughened by TiC whisker[J]. International Journal of Refractory Metals and Hard Materials, 2020, 93: 105372. doi: 10.1016/j.ijrmhm.2020.105372
|
| [4] |
KHAN S A, SCHULTHESS J L, CHARIT I, et al. Post-irradiation examination of UN-Mo-W fuels for space nuclear propulsion[J]. Journal of Nuclear Materials, 2025, 604: 155476. doi: 10.1016/j.jnucmat.2024.155476
|
| [5] |
YANG J, WU H, KITIPORNCHAI S. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams[J]. Composite Structures, 2017, 161: 111-118. doi: 10.1016/j.compstruct.2016.11.048
|
| [6] |
雷剑, 谢宇阳, 姚明格, 等. 变截面二维功能梯度微梁的振动和屈曲特性[J]. 应用数学和力学, 2022, 43(10): 1133-1145. doi: 10.21656/1000-0887.420323
LEI Jian, XIE Yuyang, YAO Mingge, et al. Vibration and buckling characteristics of 2D functionally graded microbeams with variable cross sections[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1133-1145. (in Chinese) doi: 10.21656/1000-0887.420323
|
| [7] |
SHEN H S. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments[J]. Composite Structures, 2009, 91(1): 9-19. doi: 10.1016/j.compstruct.2009.04.026
|
| [8] |
WU B, SU Y, LIU D, et al. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders[J]. Journal of Sound and Vibration, 2018, 421: 17-47. doi: 10.1016/j.jsv.2018.01.055
|
| [9] |
MAO J J, WANG Y J, ZHANG W, et al. Vibration and wave propagation in functionally graded beams with inclined cracks[J]. Applied Mathematical Modelling, 2023, 118: 166-184. doi: 10.1016/j.apm.2023.01.035
|
| [10] |
NEJATI M, FARD K M, ESLAMPANAH A, et al. Free vibration analysis of reinforced composite functionally graded plates with steady state thermal conditions[J]. Latin American Journal of Solids and Structures, 2017, 14(5): 886-905. doi: 10.1590/1679-78253705
|
| [11] |
龚雪蓓, 赵伟东, 郭冬梅. 横向非均匀温度场作用的FGM夹层圆板热屈曲分析[J]. 应用数学和力学, 2023, 44(4): 419-430. doi: 10.21656/1000-0887.430094
GONG Xuebei, ZHAO Weidong, GUO Dongmei. Thermal buckling analysis of FGM sandwich circular plates under transverse nonuniform temperature field actions[J]. Applied Mathematics and Mechanics, 2023, 44(4): 419-430. (in Chinese) doi: 10.21656/1000-0887.430094
|
| [12] |
HOSSEINI-HASHEMI S, FADAEE M, ATASHIPOUR S R. A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates[J]. International Journal of Mechanical Sciences, 2011, 53(1): 11-22. doi: 10.1016/j.ijmecsci.2010.10.002
|
| [13] |
张继超, 钟心雨, 陈一鸣, 等. 基于Hamilton体系的功能梯度矩形板自由振动问题的解析解[J]. 应用数学和力学, 2024, 45(9): 1157-1171. doi: 10.21656/1000-0887.440279
ZHANG Jichao, ZHONG Xinyu, CHEN Yiming, et al. Hamiltonian system-based analytical solutions to free vibration problems of functionally graded rectangular plates[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1157-1171. (in Chinese) doi: 10.21656/1000-0887.440279
|
| [14] |
OLSON D W, WOLF S F, HOOK J M. The Tacoma narrows bridge collapse[J]. Physics Today, 2015, 68(11): 64-65. doi: 10.1063/PT.3.2991
|
| [15] |
CAO Y, WU B, CARRERA E, et al. Axisymmetric vibration of multilayered electroactive circular plates in contact with fluid[J]. Journal of Sound and Vibration, 2024, 573: 118189. doi: 10.1016/j.jsv.2023.118189
|
| [16] |
JACOBSEN L S. Impulsive hydrodynamics of fluid inside a cylindrical tank and of fluid surrounding a cylindricalpier[J]. Bulletin of the Seismological Society of America, 1949, 39(3): 189-204. doi: 10.1785/BSSA0390030189
|
| [17] |
HOSSEINI-HASHEMI S, KARIMI M, ROKNI H. Natural frequencies of rectangular Mindlin plates coupled with stationary fluid[J]. Applied Mathematical Modelling, 2012, 36(2): 764-778. doi: 10.1016/j.apm.2011.07.007
|
| [18] |
KHORSHIDI K, AKBARI F, GHADIRIAN H. Experimental and analytical modal studies of vibrating rectangular plates in contact with a bounded fluid[J]. Ocean Engineering, 2017, 140: 146-154. doi: 10.1016/j.oceaneng.2017.05.017
|
| [19] |
ZHOU D, CHEUNG Y K. Vibration of vertical rectangular plate in contact with water on oneside[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(5): 693-710.
|
| [20] |
Akbarov S D, Ismailov M I. Frequency response of a viscoelastic plate under compressible viscous fluid loading[J]. International Journal of Mechanics, 2014, 8: 332-344.
|
| [21] |
KOZLOVSKY Y. Vibration of plates in contact with viscous fluid: extension of Lamb's model[J]. Journal of Sound and Vibration, 2009, 326(1/2): 332-339.
|
| [22] |
HOSSEINI-HASHEMI S, ARPANAHI R A, RAHMANIAN S, et al. Free vibration analysis of nano-plate in viscous fluid medium using nonlocal elasticity[J]. European Journal of Mechanics A, 2019, 74: 440-448. doi: 10.1016/j.euromechsol.2019.01.002
|
| [23] |
JEONG K H, KIM K J. Hydroelastic vibration of a circular plate submerged in a bounded compressible fluid[J]. Journal of Sound and Vibration, 2005, 283(1/2): 153-172.
|
| [24] |
ZHOU D, LIU W Q. Bending-torsion vibration of a partially submerged cylinder with an arbitrary cross-section[J]. Applied Mathematical Modelling, 2007, 31(10): 2249-2265. doi: 10.1016/j.apm.2006.08.011
|
| [25] |
ZHOU D. Vibration of uniform columns with arbitrarily shaped cross-sections partially submerged in water considering the effects of surface wave and compressibility of water[J]. Computers & Structures, 1993, 46(6): 1049-1054.
|
| [26] |
LIAO C Y, MA C C. Vibration characteristics of rectangular plate in compressible inviscid fluid[J]. Journal of Sound and Vibration, 2016, 362: 228-251. doi: 10.1016/j.jsv.2015.09.031
|
| [27] |
LI H C, KE L L, YANG J, et al. Free vibration of variable thickness FGM beam submerged in fluid[J]. Composite Structures, 2020, 233: 111582. doi: 10.1016/j.compstruct.2019.111582
|
| [28] |
LI H C, KE L L, WU Z M, et al. Free vibration of FGM Mindlin plates submerged in fluid[J]. Engineering Structures, 2022, 259: 114144. doi: 10.1016/j.engstruct.2022.114144
|
| [29] |
WU H, LI Y, LI L, et al. Free vibration analysis of functionally graded graphene nanocomposite beams partially in contact withfluid[J]. Composite Structures, 2022, 291: 115609. doi: 10.1016/j.compstruct.2022.115609
|
| [30] |
THINH T I, TU T M, VAN LONG N. Free vibration of a horizontal functionally graded rectangular plate submerged in fluid medium[J]. Ocean Engineering, 2020, 216: 107593. doi: 10.1016/j.oceaneng.2020.107593
|
| [31] |
王乐, 王亮. 一种新的计算Timoshenko梁截面剪切系数的方法[J]. 应用数学和力学, 2013, 34(7): 756-763. doi: 10.3879/j.issn.1000-0887.2013.07.011
WANG Le, WANG Liang. A new method of obtaining Timoshenko's shear coefficients[J]. Applied Mathematics and Mechanics, 2013, 34(7): 756-763. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.07.011
|
| [32] |
HAN R P S, XU H. A simple and accurate added mass model for hydrodynamic fluid: structure interaction analysis[J]. Journal of the Franklin Institute, 1996, 333(6): 929-945. doi: 10.1016/0016-0032(96)00043-9
|
| [33] |
HUANG X, EL BAROUDI A, WU B. Vibration properties of an elastic gold nanosphere submerged in viscoelastic fluid[J]. Modern Physics Letters B, 2023, 37(33): 2350174. doi: 10.1142/S0217984923501749
|
| [34] |
WU B, GAN Y, CARRERA E, et al. Three-dimensional vibrations of multilayered hollow spheres submerged in a complex fluid[J]. Journal of Fluid Mechanics, 2019, 879: 682-715. doi: 10.1017/jfm.2019.681
|