| Citation: | YANG Feng, XIAO Min, YANG Zhengwu, DUAN Daifeng, YANG Xinsong, CAO Jinde. Pattern Evolution in a Predator-Prey System Driven by Cross-Diffusion and Double Allee Effects[J]. Applied Mathematics and Mechanics, 2026, 47(1): 90-100. doi: 10.21656/1000-0887.460002 |
| [1] |
MUIR E J, LAJEUNESSE M J, KRAMERA M. The magnitude of Allee effects varies across Allee mechanisms, but not taxonomic groups[J]. Oikos, 2024, 2024(7): e10386. doi: 10.1111/oik.10386
|
| [2] |
AKHTAR P, KARMAKAR S, SAHOO D, et al. Dynamical analysis of a prey-predator model in toxic habitat with weak Allee effect and additional food[J]. International Journal of Dynamics and Control, 2024, 12(11): 3963-3986. doi: 10.1007/s40435-024-01473-w
|
| [3] |
刘冠琦, 王玉文, 史峻平. 具有强Allee效应的半线性椭圆方程正解的存在性和非存在性[J]. 应用数学和力学, 2009, 30(11): 1374-1380. doi: 10.3879/j.issn.1000-0887.2009.11.012
LIU Guanqi, WANG Yuwen, SHI Junping. Existence and nonexistence of positive solutions of semilinear elliptic equation with inhomogeneous strong Allee effect[J]. Applied Mathematics and Mechanics, 2009, 30(11): 1374-1380. (in Chinese) doi: 10.3879/j.issn.1000-0887.2009.11.012
|
| [4] |
NAIK P A, JAVAID Y, AHMED R, et al. Stability and bifurcation analysis of a population dynamic model with Allee effect via piecewise constant argument method[J]. Journal of Applied Mathematics and Computing, 2024, 70(5): 4189-4218. doi: 10.1007/s12190-024-02119-y
|
| [5] |
VOLTERRA V. Variations and fluctuations of the number of individuals in animal species living together[J]. ICES Journal of Marine Science, 1928, 3(1): 3-51. doi: 10.1093/icesjms/3.1.3
|
| [6] |
XUE Y. Analysis of a prey-predator system incorporating the additive Allee effect and intraspecific cooperation[J]. AIMS Mathematics, 2024, 9(1): 1273-1290. doi: 10.3934/math.2024063
|
| [7] |
KONDO M, ONITSUKA M. Ulam type stability for Von Bertalanffy growth model with Allee effect[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 4698-4723. doi: 10.3934/mbe.2024206
|
| [8] |
ZHU Z, CHEN Y, CHEN F, et al. Complex dynamics of a predator-prey model with opportunistic predator and weak Allee effect in prey[J]. Journal of Biological Dynamics, 2023, 17(1): 2225545. doi: 10.1080/17513758.2023.2225545
|
| [9] |
WEI Z, CHEN F. Dynamics of a delayed predator-prey model with prey refuge, Allee effect and fear effect[J]. International Journal of Bifurcation and Chaos, 2023, 33(3): 2350036. doi: 10.1142/S0218127423500360
|
| [10] |
SAHOO K, SAHOO B. Crucial impact of component Allee effect in predator-prey system[J]. Journal of Physics A: Mathematical and Theoretical, 2024, 57(21): 215601. doi: 10.1088/1751-8121/ad43ca
|
| [11] |
覃文杰, 关海艳, 王培培, 等. 基于Allee效应诱导的Filippov生态系统的动力学行为研究[J]. 应用数学和力学, 2020, 41(4): 438-447. doi: 10.21656/1000-0887.400169
QIN Wenjie, GUAN Haiyan, WANG Peipei, et al. Dynamic behaviors of filippov ecosystems induced by Allee effects[J]. Applied Mathematics and Mechanics, 2020, 41(4): 438-447. (in Chinese) doi: 10.21656/1000-0887.400169
|
| [12] |
ZU J, MIMURA M. The impact of Allee effect on a predator-prey system with Holling type Ⅱ functional response[J]. Applied Mathematics and Computation, 2010, 217(7): 3542-3556. doi: 10.1016/j.amc.2010.09.029
|
| [13] |
GAIKO V A, VUIK C. Global dynamics in the Leslie-Gower model with the Allee effect[J]. International Journal of Bifurcation and Chaos, 2018, 28(12): 1850151. doi: 10.1142/S0218127418501511
|
| [14] |
SARANGI B P, RAW S N. Dynamics of a spatially explicit eco-epidemic model with double Allee effect[J]. Mathematics and Computers in Simulation, 2023, 206: 241-263. doi: 10.1016/j.matcom.2022.11.004
|
| [15] |
WANG F, YANG R, ZHANG X. Turing patterns in a predator-prey model with double Allee effect[J]. Mathematics and Computers in Simulation, 2024, 220: 170-191. doi: 10.1016/j.matcom.2024.01.015
|
| [16] |
TURING A M. The chemical basis of morphogenesis[J]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 1952, 237: 37-72.
|
| [17] |
TORCICOLLO I, VITIELLO M. Turing instability and spatial pattern formation in a model of urbancrime[J]. Mathematics, 2024, 12(7): 1097. doi: 10.3390/math12071097
|
| [18] |
宁利中, 宁碧波, 胡彪, 等. 具有水平流动的对流斑图成长和动力学特性[J]. 应用数学和力学, 2020, 41(10): 1146-1156. doi: 10.21656/1000-0887.410104
NING Lizhong, NING Bibo, HU Biao, et al. Growth and dynamics of convection patterns with horizontal flow[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1146-1156. (in Chinese) doi: 10.21656/1000-0887.410104
|
| [19] |
ZHOU J, YE Y, ARENAS A, et al. Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks[J]. Chaos, Solitons & Fractals, 2023, 174: 113805.
|
| [20] |
WANG J L, HAN Y X, CHEN Q T, et al. Numerical simulation and theoretical analysis of pattern dynamics for the fractional-in-space Schnakenberg model[J]. Frontiers in Physics, 2024, 12: 1452077. doi: 10.3389/fphy.2024.1452077
|
| [21] |
LI W, LI Y, YANG R. Spatial patterns of a reaction-diffusion population system with cross-diffusion and habitat complexity[J]. International Journal of Biomathematics, 2025, 18(8): 2450038. DOI: 10.1142/s1793524524500384.
|
| [22] |
柳文清, 陈清婉. 捕食者食饵均染病的入侵反应扩散捕食系统中扩散的作用[J]. 应用数学和力学, 2019, 40(3): 321-331. doi: 10.21656/1000-0887.390100
LIU Wenqing, CHEN Qingwan. Influence of diffusion on an invasion-diffusion prey-predator model with disease infection in both populations[J]. Applied Mathematics and Mechanics, 2019, 40(3): 321-331. (in Chinese) doi: 10.21656/1000-0887.390100
|
| [23] |
WEI J, LIU B. Coexistence in a competition-diffusion-advection system with equal amount of total resources[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 3543-3558. doi: 10.3934/mbe.2021178
|
| [24] |
WANG J, ZHENG H. Analysis on steady states of a competition system with nonlinear diffusion terms[J]. Acta Applicandae Mathematicae, 2021, 171(1): 26. doi: 10.1007/s10440-021-00393-7
|
| [25] |
LI L, LI X. The spatiotemporal dynamics of a diffusive predator-prey model with double Allee effect[J]. AIMS Mathematics, 2024, 9(10): 26902-26915. doi: 10.3934/math.20241309
|
| [26] |
祖力, 黄冬冬, 柳扬. 捕食者和食饵均带有扩散的随机捕食-食饵模型动力学分析[J]. 应用数学和力学, 2017, 38(3): 355-368. doi: 10.21656/1000-0887.370051
ZU Li, HUANG Dongdong, LIU Yang. Dynamics of dual-dispersal predator-prey systems under stochastic perturbations[J]. Applied Mathematics and Mechanics, 2017, 38(3): 355-368. (in Chinese) doi: 10.21656/1000-0887.370051
|
| [27] |
JANA D, BATABYAL S, LAKSHMANAN M. Self-diffusion-driven pattern formation in prey-predator system with complex habitat under fear effect[J]. The European Physical Journal Plus, 2020, 135(11): 884. doi: 10.1140/epjp/s13360-020-00897-5
|
| [28] |
SUN G Q, JIN Z, LIU Q X, et al. Pattern formation induced by cross-diffusion in a predator-prey system[J]. Chinese Physics B, 2008, 17(11): 3936-3941. doi: 10.1088/1674-1056/17/11/003
|
| [29] |
WANG F, YANG R. Spatial pattern formation driven by the cross-diffusion in a predator-prey model with Holling type functional response[J]. Chaos, Solitons & Fractals, 2023, 174: 113890.
|
| [30] |
CAI Y, ZHAO C, WANG W, et al. Dynamics of a Leslie-Gower predator-prey model with additive Allee effect[J]. Applied Mathematical Modelling, 2015, 39(7): 2092-2106. doi: 10.1016/j.apm.2014.09.038
|