| Citation: | WANG Yilin, LI Weiguo, MA Jianzuo. A Theoretical Characterization Model for Temperature-Dependent Yield Strengths of Metal Matrix Composites Reinforced With Nanoparticles[J]. Applied Mathematics and Mechanics, 2026, 47(1): 57-67. doi: 10.21656/1000-0887.460044 |
| [1] |
JIAO Y, HUANG L, GENG L. Progress on discontinuously reinforced titanium matrix composites[J]. Journal of Alloys and Compounds, 2018, 767 : 1196-1215. doi: 10.1016/j.jallcom.2018.07.100
|
| [2] |
TJONG S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering R: Reports, 2013, 74(10): 281-350. doi: 10.1016/j.mser.2013.08.001
|
| [3] |
RAVIRAJ S, ADITHYA H, KUMAR S S U, et al. Processing and mechanical characterisation of titanium metal matrix composites: a literature review[J]. Journal of Composites Science, 2022, 6(12): 388. doi: 10.3390/jcs6120388
|
| [4] |
RAMESH C S, ADARSHA H, PRAMOD S, et al. Tribological characteristics of innovative Al6061-carbon fiber rod metal matrix composites[J]. Materials & Design, 2013, 50 : 597-605.
|
| [5] |
HASSAN S F, TAN M J, GUPTA M. High-temperature tensile properties of Mg/Al2O3 nanocomposite[J]. Materials Science and Engineering A, 2008, 486(1/2): 56-62.
|
| [6] |
OÑORO J, SALVADOR M, CAMBRONERO L. High-temperature mechanical properties of aluminium alloys reinforced with boron carbide particles[J]. Materials Science & Engineering A, 2008, 499(1): 421-426.
|
| [7] |
CASATI R, FIOCCHI J, FABRIZI A, et al. Effect of ball milling on the ageing response of Al2618 composites reinforced with SiC and oxide nanoparticles[J]. Journal of Alloys and Compounds, 2017, 693 : 909-920. doi: 10.1016/j.jallcom.2016.09.265
|
| [8] |
YU H, ZHOU H, SUN Y, et al. Microstructures and mechanical properties of ultrafine-grained Ti/AZ31 magnesium matrix composite prepared by powder metallurgy[J]. Advanced Powder Technology, 2018, 29(12): 3241-3249.
|
| [9] |
ZHANG Z, CHEN D. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength[J]. Scripta Materialia, 2006, 54(7): 1321-1326. doi: 10.1016/j.scriptamat.2005.12.017
|
| [10] |
HASSANZADEH-AGHDAM M K, MAHMOODI M J, ANSARI R. A comprehensive predicting model for thermomechanical properties of particulate metal matrix nanocomposites[J]. Journal of Alloys and Compounds, 2018, 739 : 164-177. doi: 10.1016/j.jallcom.2017.12.232
|
| [11] |
CLYNE T W, WITHERS P J. An Introduction to Metal Matrix Composites[M]. Cambridge: Cambridge University Press, 1993.
|
| [12] |
GOH C, WEI J, LEE L, et al. Properties and deformation behaviour of Mg-Y2O3 nanocomposites[J]. Acta Materialia, 2007, 55(15): 5115-5121.
|
| [13] |
DAI L, LING Z, BAI Y L. Size-dependent inelastic behavior of particle-reinforced metal-matrix composites[J]. Composites Science and Technology, 2001, 61(8): 1057-1063. doi: 10.1016/S0266-3538(00)00235-9
|
| [14] |
SANATY-ZADEH A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect[J]. Materials Science & Engineering A, 2011, 531 : 112-118.
|
| [15] |
MALAKI M, XU W, KASAR A, et al. Advanced metal matrix nanocomposites[J]. Metals, 2019, 9(3): 330. doi: 10.3390/met9030330
|
| [16] |
ZHANG X, LI W, MA J, et al. A novel temperature dependent yield strength model for metals considering precipitation strengthening and strain rate[J]. Computational Materials Science, 2017, 129 : 147-155. doi: 10.1016/j.commatsci.2016.12.005
|
| [17] |
PAN D, MA Y L, ZHANG X Y, et al. Theoretical prediction method of Young's modulus and yield strength of micron particle reinforced metal matrix composites at different temperatures[J]. Composite Structures, 2023, 316 : 117051.
|
| [18] |
ZHANG X, LI W, MA J, et al. Modeling the effects of grain boundary sliding and temperature on the yield strength of high strength steel[J]. Journal of Alloys and Compounds, 2021, 851 : 156747. doi: 10.1016/j.jallcom.2020.156747
|
| [19] |
LIU H, WANG A, WANG L, et al. The syntheses of SiCp/Al nanocomposites under high pressure[J]. Journal of Materials Research, 1997, 12(5): 1187-1190. doi: 10.1557/JMR.1997.0166
|
| [20] |
ZHANG Z, CHEN D L. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites[J]. Materials Science and Engineering A, 2008, 483 : 148-152.
|
| [21] |
RAMAKRISHNAN N. An analytical study on strengthening of particulate reinforced metal matrix composites[J]. Acta Materialia, 1996, 44(1): 69-77. doi: 10.1016/1359-6454(95)00150-9
|
| [22] |
KIM C S, SOHN I, NEZAFATI M, et al. Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs)[J]. Journal of Materials Science, 2013, 48(12): 4191-4204. doi: 10.1007/s10853-013-7232-x
|
| [23] |
FU E G, LI N, MISRA A, et al. Mechanical properties of sputtered Cu/V and Al/Nb multilayer films[J]. Materials Science and Engineering A, 2008, 493(1/2): 283-287.
|
| [24] |
TAYEH T, DOUIN J, JOUANNIGOT S, et al. Hardness and Young's modulus behavior of Al composites reinforced by nanometric TiB2 elaborated by mechanosynthesis[J]. Materials Science and Engineering A, 2014, 591 : 1-8.
|
| [25] |
RAJ R, THAKUR D G. Effect of particle size and volume fraction on the strengthening mechanisms of boron carbide reinforced aluminum metal matrix composites[J]. Proceedings of the Institution of Mechanical Engineers (Part C): Journal of Mechanical Engineering Science, 2019, 233(4): 1345-1356. doi: 10.1177/0954406218771997
|
| [26] |
ASHBY M F. The deformation of plastically non-homogeneous materials[J]. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1970, 21(170): 399-424.
|
| [27] |
LIN T C, CAO C, SOKOLUK M, et al. Aluminum with dispersed nanoparticles by laser additive manufacturing[J]. Nature Communications, 2019, 10 : 4124.
|
| [28] |
叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 2版. 北京: 冶金工业出版社, 2002.
YE Dalun, HU Jianhua. Practical Manual of Inorganic Thermodynamic Data[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2002. (in Chinese))
|
| [29] |
SRIDHARAN N, GUSSEV M N, PARISH C M, et al. Evaluation of microstructure stability at the interfaces of Al-6061 welds fabricated using ultrasonic additive manufacturing[J]. Materials Characterization, 2018, 139 : 249-258.
|
| [30] |
SOLTANI M, ATRIAN A. High temperature tensile behavior and microstructure of Al-SiC nanocomposite fabricated by mechanical milling and hot extrusion technique[J]. Materials Research Express, 2018, 5(2): 025026.
|
| [31] |
MA S, DAI J, ZHANG C, et al. Enhanced high temperature mechanical properties and heat resistance of an Al-Cu-Mg-Fe-Ni matrix composite reinforced with in situ TiB2 particles[J]. Journal of Materials Science, 2023, 58(32): 13019-13039.
|
| [32] |
ZHANG L J, QIU F, WANG J G, et al. High strength and good ductility at elevated temperature of nano-SiCp/Al2014 composites fabricated by semi-solid stir casting combined with hot extrusion[J]. Materials Science and Engineering A, 2015, 626 : 338-341.
|
| [33] |
PARK J G, KEUM D H, LEE Y H. Strengthening mechanisms in carbon nanotube-reinforced aluminum composites[J]. Carbon, 2015, 95 : 690-698.
|
| [34] |
LLOYD D J. Particle reinforced aluminium and magnesium matrix composites[J]. International Materials Reviews, 1994, 39(1): 1-23.
|
| [35] |
BHARATH V, AJAWAN S S, NAGARAL M, et al. Characterization and mechanical properties of 2014 aluminum alloy reinforced with Al2O3p composite produced by two-stage stir casting route[J]. Journal of the Institution of Engineersp (Indiap): Series C, 2019, 100(2): 277-282.
|
| [36] |
HUANG Y, SUN X, CHANG Y, et al. High thermal stability and mechanical properties of nanosized-Fe-reinforced aluminum matrix composites via deformation-driven metallurgy[J]. Materials Science and Engineering A, 2024, 913 : 147092.
|
| [37] |
SURAPPA M K. Aluminium matrix composites: challenges and opportunities[J]. Sadhana, 2003, 28(1): 319-334.
|