| Citation: | XIE Jianqiang, WANG Can. An Efficient Energy-Preserving Numerical Algorithm for Nonlinear Wave Equations[J]. Applied Mathematics and Mechanics, 2026, 47(1): 113-122. doi: 10.21656/1000-0887.460090 |
| [1] |
BRENNER P, VON WAHL W. Global classical solutions of nonlinear wave equations[J]. Mathematische Zeitschrift, 1981, 176(1): 87-121. doi: 10.1007/BF01258907
|
| [2] |
DRAZIN P J, JOHNSON R S. Solitons: An Introduction[M]. Cambridge: Cambridge University Press, 1989.
|
| [3] |
WAZWAZ A M. New travelling wave solutions to the Boussinesq and the Klein-Gordon equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(5): 889-901. doi: 10.1016/j.cnsns.2006.08.005
|
| [4] |
王媋瑗, 李宏, 何斯日古楞. 非线性sine-Gordon方程的连续时空混合有限元方法[J]. 应用数学和力学, 2024, 45(4): 490-501.
WANG Chunyuan, LI Hong, HE Siriguleng. A continuous space-time mixed finite element method for sine-Gordon equations[J]. Applied Mathematics and Mechanics, 2024, 45(4): 490-501. (in )Chinese)
|
| [5] |
张宇, 邓子辰, 胡伟鹏. Sine-Gordon方程的多辛Leap-frog格式[J]. 应用数学和力学, 2013, 34(5): 437-444. doi: 10.21656/1000-0887.370164
ZHANG Yu, DENG Zichen, HU Weipeng. Multi-symplectic leap-frog scheme for sine-Gordon equation[J]. Applied Mathematics and Mechanics, 2013, 34(5): 437-444. (in )Chinese) doi: 10.21656/1000-0887.370164
|
| [6] |
LI S, VU-QUOC L. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation[J]. SIAM Journal on Numerical Analysis, 1995, 32(6): 1839-1875. doi: 10.1137/0732083
|
| [7] |
MCLACHLAN R I, QUISPEL G R. Discrete gradient methods have an energy conservation law[J]. Discrete and Continuous Dynamical Systems, 2014, 34(3): 1099-1104. doi: 10.3934/dcds.2014.34.1099
|
| [8] |
WANG B, WU X Y. The formulation and analysis of energy-preserving schemes for solving high dimensional nonlinear Klein-Gordon equations[J]. IMA Journal of Numerical Analysis, 2019, 39(4): 2016-2044. doi: 10.1093/imanum/dry047
|
| [9] |
BRUGNANO L, FRASCA CACCIA G, IAVERNARO F. Energy conservation issues in the numerical solution of the semilinear wave equation[J]. Applied Mathematics and Computation, 2015, 270 : 842-870. doi: 10.1016/j.amc.2015.08.078
|
| [10] |
BRUGNANO L, ZHANG C J, LI D F. A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrödinger equation with wave operator[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 60: 33-49. doi: 10.1016/j.cnsns.2017.12.018
|
| [11] |
QUISPEL G R W, MCLAREN D I. A new class of energy-preserving numerical integration methods[J]. Journal of Physics A: Mathematical General, 2008, 41(4): 045206. doi: 10.1088/1751-8113/41/4/045206
|
| [12] |
YANG X, ZHAO J, WANG Q. Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method[J]. Journal of Computational Physics, 2017, 333: 104-127. doi: 10.1016/j.jcp.2016.12.025
|
| [13] |
SHEN J, XU J, YANG J. The scalar auxiliary variable (SAV) approach for gradient flows[J]. Journal of Computational Physics, 2018, 353: 407-416. doi: 10.1016/j.jcp.2017.10.021
|
| [14] |
CAI W, JIANG C, WANG Y, et al. Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions[J]. Journal of Computational Physics, 2019, 395: 166-185. doi: 10.1016/j.jcp.2019.05.048
|
| [15] |
JIANG C, CAI W, WANG Y. A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach[J]. Journal of Scientific Computing, 2019, 80(3): 1629-1655. doi: 10.1007/s10915-019-01001-5
|
| [16] |
DENG D W, WANG Q H. A class of weighted energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon-type equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 117: 106916. doi: 10.1016/j.cnsns.2022.106916
|
| [17] |
DENG D W, CHEN J L, WANG Q H. Energy-preserving Du Fort-Frankel difference schemes for solving sine-Gordon equation and coupled sine-Gordon equations[J]. Numerical Algorithms, 2023, 93(3): 1045-1081. doi: 10.1007/s11075-022-01453-1
|
| [18] |
ZHANG X H, MEI L Q, GUO S M. Energy-conserving SAV-Hermite-Galerkin spectral scheme with time adaptive method for coupled nonlinear Klein-Gordon system in multi-dimensional unbounded domains[J]. Journal of Computational and Applied Mathematics, 2025, 454: 116204. doi: 10.1016/j.cam.2024.116204
|
| [19] |
CHENG Q, LIU C, SHEN J. A new Lagrange multiplier approach for gradient flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 367: 113070. doi: 10.1016/j.cma.2020.113070
|
| [20] |
WANG Y U, JIN Y M, KHACHATURYAN A G. Phase field microelasticity modeling of dislocation dynamics near free surface and in heteroepitaxial thin films[J]. Acta Materialia, 2003, 51(14): 4209-4223. doi: 10.1016/S1359-6454(03)00238-6
|
| [21] |
KARMA A, RAPPEL W J. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J]. Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics, 1996, 53(4): R3017-R3020.
|
| [22] |
BOETTINGER W J, WARREN J A, BECKERMANN C, KARMA A. Phase-field simulation of solidification[J]. Annual Review of Materials Research, 2002, 32: 163-194. doi: 10.1146/annurev.matsci.32.101901.155803
|
| [23] |
孙志忠. 偏微分方程数值解法[M]. 第2版. 北京: 科学出版社, 2012.
SUN Zhizhong. Numerical Solution of Partial Differential Equation[M]. 2nd ed. Beijing: Science Press, 2012. (in )Chinese)
|