M. K. Partha. Non-Linear Convection in a Non-Darcy Porous Medium[J]. Applied Mathematics and Mechanics, 2010, 31(5): 533-543. doi: 10.3879/j.issn.1000-0887.2010.05.004
Citation: M. K. Partha. Non-Linear Convection in a Non-Darcy Porous Medium[J]. Applied Mathematics and Mechanics, 2010, 31(5): 533-543. doi: 10.3879/j.issn.1000-0887.2010.05.004

Non-Linear Convection in a Non-Darcy Porous Medium

doi: 10.3879/j.issn.1000-0887.2010.05.004
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-02-19
  • Publish Date: 2010-05-15
  • Natural convection in a non-Darcy porous medium was studied using the temperature-concentration-dependent density relation. The effect of two parameters a1 and a2 responsible for non-linear convection was analyzed for different values of inertial parameter, dispersion parameters, Rayleigh number, Lew is number, So retnumber and Dufour number. In the aiding buoyancy, tangential velocity f' increases steeply with an in crease in the parameters of non-linear temperature and concentration (a2 & a1), when the inertial effect is zero. But, when it is non-zero, the effect of a2 or a1 on f' is marginal. The concen tration distribution varies appreciably and spreads in different ranges for different values of double dispersion parameters, inertial effect parameter and also for parameters which control non-linear temperature and concentration. Heat and masstrans fervary extensively with an increase in a1 and a2 depending on Dacry and non-Darcy porous medium. Variation in heat and masstrans fer when all the effects (inertial effect, double dispersion effects and Soret and Dufour effects) are smiultan eously zero and non-zero and com bined effect of param eters of non-linear temperature and concentration and Buoyancy are analyzed. The effect of a1 and a2 and also the cross diffusion effects on heat and masstran sferare observed to be more in Darcy porous medium com pared to non-Darcy porous medium. In the opposing buoyancy, it is observed that the effect of a1 is to in crease the heat and masstran sferrate, whereas that of a2 is to decrease.
  • loading
  • [1]
    Lai F C, Kulacki F A. Coupled heat and mass transfer by natural convection from vertical surfaces in porous media[J]. Int J Heat and Mass Transfer, 1991, 34(4/5): 1189-1194. doi: 10.1016/0017-9310(91)90027-C
    [2]
    Angirasa D, Peterson G P, Pop I. Combined heat and mass transfer by natural convection with opposing buoyancy effects in a fluid saturated porous medium[J]. Int J Heat Mass Transfer, 1977, 40(12): 2755-2773.
    [3]
    Murthy P V S N. Effect of double dispersion on mixed convection heat and mass transfer in non-Darcy porous medium[J]. Trans ASME J Heat Transfer, 2000, 122(3): 476-484. doi: 10.1115/1.1286995
    [4]
    Nield D A, Bejan A. Convection in Porous Media[M]. 3rd ed. New York: Springer, 2006.
    [5]
    Postelnicu A. Effects of thermophoresis particle deposition in free convection boundary layer from a horizontal flat plate embedded in a porous medium[J]. Int J Heat Mass Transfer, 2007, 50(15/16): 2981-2985. doi: 10.1016/j.ijheatmasstransfer.2006.12.012
    [6]
    Anghel M, Takhar H S, Pop I. Dufour and Soret effects on free convection boundary layer flow over a vertical surface embedded in a porous medium[J]. Studia Universitatics Babes-Bolyai Mathematica, 2000, 45: 11-21.
    [7]
    Cheng P, Minkowcyz W J. Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike[J]. J Geophys Res, 1977, 82: 2040-2044. doi: 10.1029/JB082i014p02040
    [8]
    Cheng P. The influence of lateral mass flux on free convection boundary layers in saturated porous medium[J]. Int J Heat Mass Transfer, 1977, 20(3): 201-206. doi: 10.1016/0017-9310(77)90206-X
    [9]
    Bejan A, Khair K R. Heat and mass transfer by natural convection in a porous medium[J]. Int J Heat Mass Transfer, 1985, 28(5): 909-918. doi: 10.1016/0017-9310(85)90272-8
    [10]
    Cheng P. Buoyancy induced boundary layer flows in Geothermal reservoirs[C]Proc of the 2nd Work Shop on Geothermal Reservoir Engineering. Standford, California: Standford University, 1976: 236-246.
    [11]
    Cengel Y A. Heat Transfer—a Practical Approach[M]. 2nd ed. New Delhi-India:Tata McGraw Hill, 2003.
    [12]
    Verms G. Thermophoresis-enhanced deposition rates in combustion turbine blade passages[J]. J Engrg Power, 1979, 101: 542-548. doi: 10.1115/1.3446614
    [13]
    Goren S L. On free convection in water at 40℃[J]. Chem Eng Sci, 1966, 21(6/7): 515-518. doi: 10.1016/0009-2509(66)85065-0
    [14]
    Sinha P C. Fully developed laminar free convection flow between vertical parallel plates[J]. Chem Eng Sci, 1969, 24(1): 33-38. doi: 10.1016/0009-2509(69)80005-9
    [15]
    Gilpin R R. Cooling of a horizontal cylinder of water through its maximum density point at 4℃[J]. Int J Heat Mass Transfer, 1975, 18(11): 1307-1315. doi: 10.1016/0017-9310(75)90241-0
    [16]
    Vanier C R, Tien C. Effect of maximum density and melting on natural convection heat transfer from a vertical plate[J]. Chem Engng Frog Symp Ser, 1968, 64(82):240-254.
    [17]
    Yen Y-C, Effects of density inversion on free convective heat transfer in porous layer heated from below[J]. Int J Heat Mass Transfer, 1974, 17(11): 1349-1356.
    [18]
    Partha M K, Murthy P V S N, Raja Shekhar G P. Soret and Dufour effects in a non-Darcy porous medium[J]. ASME J Heat Transfer, 2006, 128(6): 605-610. doi: 10.1115/1.2188512
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1478) PDF downloads(751) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return