R.K.Singh, A.K.Singh. MHD Free Convective Flow Past a Semi-Infinite Vertical Permeable Wall[J]. Applied Mathematics and Mechanics, 2012, 33(9): 1129-1142. doi: 10.3879/j.issn.1000-0887.2012.09.009
Citation: R.K.Singh, A.K.Singh. MHD Free Convective Flow Past a Semi-Infinite Vertical Permeable Wall[J]. Applied Mathematics and Mechanics, 2012, 33(9): 1129-1142. doi: 10.3879/j.issn.1000-0887.2012.09.009

MHD Free Convective Flow Past a Semi-Infinite Vertical Permeable Wall

doi: 10.3879/j.issn.1000-0887.2012.09.009
  • Received Date: 2011-05-04
  • Rev Recd Date: 2012-05-11
  • Publish Date: 2012-09-15
  • The basic equations governing the flow and heat transfer of an incompressible viscous and electrically conducting fluid past a semi-infinite vertical permeable plate in the form of partial differential equations were reduced to a set of nonlinear ordinary differential equations by applying a suitable similarity transformation. Approximate solutions of the transformed equations were obtained by employing the perturbation method for two cases of suction parameter i.e., small and large values. From the numerical evaluations of the solution it is seen that the velocity field at any point decreases as the value of the magnetic and suction parameters increases. The effect of the magnetic parameter is to increase the thermal boundary layer. It is also found that the velocity and temperature fields decrease with the increase in sink parameter.
  • loading
  • [1]
    Pohlhausen E. Der wareastausch zwischen festen korpenn und Flussigkeiten mit kleineer Reibung und kleinerwarmeletung[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1921,1: 115-121.
    [2]
    Ostrach S. An analysis of laminar free convection flow heat transfer about a flat plate parallel to the direction of the generating body force
    [3]
    [R]. NASA Report No 1111, 1953.
    [4]
    Siegel R. Transient free convection from a vertical flat plate[J]. Transactions of the American Society of Mechanical Engineers, 1958, 80: 347-359.
    [5]
    Gebhart B. Transient natural convection from vertical elements[J]. ASME, Journal of Heat Transfer, 1961, 83: 61-70.
    [6]
    Cheng P. Combined free and forced convection flow about inclined surface in porous media[J]. International Journal Heat Mass Transfer, 1977, 20(8): 807-814.
    [7]
    Singh A K. Boundary-layer flows with swirl and large suction[J]. Applied Scientific Research, 1979, 35(1): 59-65.
    [8]
    Singh A K, Rai K D. Unsteady free convective flow of water at 4℃ past a semi-infinite vertical plate by finite difference method[J]. Modeling, Simulation and Control B, 1987, 12: 9.
    [9]
    Ali M, Al-Yousef F. Laminar mixed convection from a continuously moving vertical surface with suction or injection[J]. Heat and Mass Transfer, 1998, 33(4): 301-306.
    [10]
    Raptis A, Perdikis C. Free convection flow of water near 4℃ past a moving plate[J]. Forschung im Ingenieurwesen, 2002, 67(5): 206-208.
    [11]
    Chandran P, Sacheti N C, Singh A K. Natural convection near a vertical plate with ramped wall temperature[J]. Heat and Mass Transfer, 2005, 41(5): 459-464.
    [12]
    Patel M, Timol M G. Numerical solution of the equation for unsteady boundary layer flow of non-Newtonian fluids past semi-infinite plate[J]. International Journal of Applied Mathematics and Mechanics, 2009, 5: 22-29.
    [13]
    Kulandaivel T, Loganathan P, Muthucumaraswamy R. Chemical reaction on moving vertical plate with constant mass flux in presence of thermal radiation[J]. International Journal of Applied Mathematics and Mechanics, 2009, 5: 84-95.
    [14]
    Hartmann J. Hg-dynamics I theory of the laminar flow of an electrically conductive liquid in a homogenous magnetic field[J]. Det Kal Danske Videnskabernes Selskab, Mathematisk-Fysiske Meddeleser, 1937, 15(6): 1-27.
    [15]
    Cramer K R, Pai S I. Magnetofluid Dynamics for Engineering and Applied Physicists[M]. New York: McGraw-Hill, 1973.
    [16]
    Takhar H S, Raptis A, Perdikis C. MHD asymmetric flow past a semi-infinite moving plate[J]. Acta Mechanica, 1987, 65(1/4): 278-290.
    [17]
    Chandran P, Sacheti N C, Singh A K. Effects of rotation on unsteady hydrodynamic Couette flow[J]. Astrophysics and Space Science, 1993, 202: 1-10.
    [18]
    Chandran P, Sacheti N C, Singh A K. Hydromagnetic flow and heat transfer past a continuously moving porous boundary[J]. International Communication in Heat and Mass Transfer, 1996, 23(6): 889-898.
    [19]
    Chandran P, Sacheti N C, Singh A K. Unsteady hydromagnetic free convection flow with heat flux and accelerated boundary motion[J]. Journal of Physical Society of Japan, 1998, 67: 124-129.
    [20]
    Chandran P, Sacheti N C, Singh A K. An undefined approach to analytical solution of a hydromagnetic free convection flow[J]. Scientiae Mathematicae Japonicae, 2001, 53: 467-476.
    [21]
    Singh A K, Chandran P, Sacheti N C. Effects of transverse magnetic field on a flat plate thermometer problem[J]. International Journal of Heat and Mass Transfer, 2000, 43: 3253-3258.
    [22]
    Mohapatra T R, Gupta A S. Magnetohydrodynamic stagnation-point flow towards a stretching sheet[J]. Acta Mechanica, 2001, 152(1/4): 191-196.
    [23]
    Takhar H S, Singh A K, Nath G. Unsteady MHD flow and heat transfer on a rotating disk in an ambient fluid[J]. International Journal of Thermal Sciences, 2002, 41(2): 147-155.
    [24]
    Sharma P R, Singh G. Unsteady MHD free convective flow and heat transfer along a vertical porous plate with variable suction and internal heat generation[J]. International Journal of Applied Mathematics and Mechanics, 2008, 4(5): 1-8.
    [25]
    Ambethkar V. Numerical solutions of heat and mass transfer effects of an unsteady MHD free convective flow past an infinite vertical plate with constant suction and heat source and sink[J]. International Journal of Applied Mathematics and Mechanics, 2009, 5(3): 96-115.
    [26]
    Chamkha A J. MHD flow of numerical of uniformly stretched vertical permeable surface in the presence of heat generator/absorption and a chemical reaction[J]. International Communications in Heat and Mass Transfer, 2003, 30: 413-422.
    [27]
    Abdelkhalek M M. The skin friction in the MHD mixed convection stagnation point with mass transfer[J]. International Communications in Heat and Mass Transfer, 2006, 33(2): 249-258.
    [28]
    Singh R K, Singh A K, Sacheti N C, Chandran P. On hydromagnetic free convection in the presence of induced magnetic field[J]. Heat and Mass Transfer, 2009, 46(5): 523-529.
    [29]
    阿里 F M, 纳扎尔 R, 阿里菲 N M, 波普 I. 考虑感应磁场时,伸展表面上的MHD驻点流动及其热传递[J]. 应用数学和力学, 2011, 32(4): 391-399.(Ali F M, Nazar R, Arifin N M, Pop I. MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field[J]. Applied Mathematics and Mechanics(English Edition), 2011, 32(4): 409-418.)
    [30]
    苏晓红, 郑连存. 可渗透壁面上Falkner-Skan磁流体动力学流动的近似解[J]. 应用数学和力学, 2011, 32(4): 383-390.(SU Xiao-hong, ZHENG Lian-cun. Approximate solutions to MHD Falkner-Skan flow over permeable wall[J]. Applied Mathematics and Mechanics(English Edition), 2011, 32(4): 401-408.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1744) PDF downloads(792) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return