Citation: | CHEN Li-juan, LU Shi-ping. Homoclinic Orbit of the Motion Model for a Single Space Plasma Particle[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1258-1265. doi: 10.3879/j.issn.1000-0887.2013.12.004 |
[1] |
McLean D J. Solar Radiophysics [M]. London: Cambridge University Press, 1985.
|
[2] |
|
[3] |
HUANG Guang-li. Turbulent spectrum of Alfvén waves excited by a kinetic instability for explaining the modulations with multi-timescales in solar flares[J]. Astrophysics and Space Science,2009, 321(2): 79-89.
|
[4] |
|
[5] |
Aschwanden M J. Particle Acceleration and Kinematics in Solar Flares [M]. Netherlands: Springer, 2002: 187-227.
|
[6] |
|
[7] |
Sakai J I, Kitamoto T, Saito S. Simulation of solar type III radio bursts from a magnetic reconnection[J]. The Astrophysical Journal Letters,2005, 622(2): 157-160.
|
[8] |
Grechnev V V, White S M, Kundu M R. Quasi-periodic pulsations in a solar microwave burst[J]. Astrophysical Journal,2003, 588(2): 1163-1175.
|
[9] |
|
[10] |
HUANG Guang-li, JI Hai-sheng. Radio, hard X-ray, EUV and optical study of september 9, 2002 solar flare[J]. Astrophysics and Space Science,2006, 301(1/4): 65-71.
|
[11] |
|
[12] |
MO Jia-qi, LIN Su-rong. The homotopic mapping solution for the solitary wave for a generalized nonlinear evolution equation[J]. Chin Phys B,2009, 18(9): 3628-3631.
|
[13] |
|
[14] |
MO Jia-qi. Solution of travelling wave for nonlinear disturbed long-wave system[J].Commun Theor Phys,2011, 55(3): 387-390.
|
[15] |
|
[16] |
MO Jia-qi, CHEN Xian-feng. Homotopic mapping method of solitary wave solutions for generalized complex Burgers equation[J]. Chin Phys B,2010, 19(10): 100203.
|
[17] |
|
[18] |
MO Jia-qi, LIN Wan-tao, WANG Hui. A class of homotopic solving method for ENSO model[J]. Acta Math Sci,2009, 29(1): 101-110.
|
[19] |
|
[20] |
姚静荪, 欧阳成, 陈丽华, 莫嘉琪. 非线性扰动耦合Schrodinger系统激波的近似解法[J]. 应用数学和力学, 2012, 33(12): 1477-1486.(YAO Jing-sun, OUYANG Cheng, CHEN Li-hua, MO Jia-qi. Approximate solving method of shock for nonlinear disturbed coupled Schrdinger system[J]. Applied Mathematics and Mechanics,2012, 33(12): 1477-1486.(in Chinese))
|
[21] |
李晓静. 厄尔尼诺大气物理机制的周期解[J]. 物理学报, 2008, 57(9): 5366-5368.(LI Xiao-jing. The periodic solutions of EI Nio mechanism of atmospheric physics[J]. Acta Physica Sinica,2008, 57(9): 5366-5368.(in Chinese))
|
[22] |
|
[23] |
Tang X H, LI Xiao. Homoclinic solutions for ordinary p-Laplacian systems with a coercive potential[J]. Nonlinear Analysis: Theory, Methods & Applications,2009, 71(3/4): 1124-1132.
|
[24] |
|
[25] |
Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations [M]. Berlin: Springer, 1977.
|
[26] |
|
[27] |
Kivelson M G, Russell C T. Introduction to Space Physics [M]. Cambridge, New York: Cambridge University Press, 1995.
|
[28] |
|