Volume 44 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
LI Yang, YAN Dongmei, LIU Lei. UGV Path Programming Based on the DQN With Noise in the Output Layer[J]. Applied Mathematics and Mechanics, 2023, 44(4): 450-460. doi: 10.21656/1000-0887.430070
Citation: LI Yang, YAN Dongmei, LIU Lei. UGV Path Programming Based on the DQN With Noise in the Output Layer[J]. Applied Mathematics and Mechanics, 2023, 44(4): 450-460. doi: 10.21656/1000-0887.430070

UGV Path Programming Based on the DQN With Noise in the Output Layer

doi: 10.21656/1000-0887.430070
  • Received Date: 2022-03-07
  • Rev Recd Date: 2022-12-08
  • Publish Date: 2023-04-01
  • The path programming of the unmanned ground vehicle (UGV) was studied under the framework of the deep Q-network (DQN) algorithm. To improve the exploration efficiency, the DQN algorithm was applied through discretization of the continuous state into the discrete state. To balance between exploration and exploitation, the Gaussian noise was added only in the output layer of the network, and a progressive reward function was designed. Finally, experiments were carried out in the Gazebo simulation environment. The simulation results show that, first, this strategy can quickly program a collision-free route from the initial point to the target point, and the convergence speed is significantly higher than those of the Q-learning algorithm, the DQN algorithm and the noisynet_DQN algorithm; second, this strategy has the generalization ability about the initial point, the target point and the obstacles, as well as verified effectiveness and robustness.
  • loading
  • [1]
    王洪斌, 尹鹏衡, 郑维, 等. 基于改进的A*算法与动态窗口法的移动机器人路径规划[J]. 机器人, 2020, 42(3): 346-353. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR202003010.htm

    WANG Hongbin, YIN Pengheng, ZHENG Wei, et al. Mobile robot path planning based on improved A* algorithm and dynamic window method[J]. Robot, 2020, 42(3): 346-353. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR202003010.htm
    [2]
    SONG Q, LI S, ZHE L. Automatic guided vehicle path planning based on improved genetic algorithm[J]. Modular Machine Tool and Automatic Processing Technology, 2020(7): 88-92.
    [3]
    ZHANG S, PU J, SI Y, et al. Review on the application of ant colony algorithm in path planning of mobile robots[J]. Computer Engineering and Applications, 2020, 56(8): 10-19.
    [4]
    KOVÁCS B, SZAYER G, TAJTI F. A novel potential field method for path planning of mobile robots by adapting animal motion attributes[J]. Robotics and Autonomous Systems, 2016, 82: 24-34. doi: 10.1016/j.robot.2016.04.007
    [5]
    马丽新, 刘晨, 刘磊. 基于actor-critic算法的分数阶多自主体系统最优主-从一致性控制[J]. 应用数学和力学, 2022, 43(1): 104-114. doi: 10.21656/1000-0887.420124

    MA Lixin, LIU Chen, LIU Lei. Optimal leader-following consensus control of fractional-order multi-agent systems based on the actor-critic algorithm[J]. Applied Mathematics and Mechanics, 2022, 43(1): 104-114. (in Chinese) doi: 10.21656/1000-0887.420124
    [6]
    刘晨, 刘磊. 基于事件触发策略的多智能体系统的最优主-从一致性分析[J]. 应用数学和力学, 2019, 40(11): 1278-1288. doi: 10.21656/1000-0887.400216

    LIU Chen, LIU Lei. Optimal leader-following consensus of multi-agent systems based on event-triggered strategy[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1278-1288. (in Chinese) doi: 10.21656/1000-0887.400216
    [7]
    CHEN Y F, LIU M, EVERETT M, et al. Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning[C]//2017 IEEE International Conference on Robotics and Automation. Singapore, 2017: 285-292.
    [8]
    高阳, 陈世福, 陆鑫. 强化学习研究综述[J]. 自动化学报, 2004, 30(1): 86-100. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200401010.htm

    GAO Yang, CHEN Shifu, LU Xin. A review of reinforcement learning[J]. Journal of Automatica Sinica, 2004, 30(1): 86-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200401010.htm
    [9]
    YUAN X. faster finding of optimal path in robotics playground using Q-learning with "exploitation-exploration trade-off"[J]. Journal of Physics: Conference Series, 2021, 1748(2): 022008. doi: 10.1088/1742-6596/1748/2/022008
    [10]
    MAOUDJ A, HENTOUT A. Optimal path planning approach based on Q-learning algorithm for mobile robots[J]. Applied Soft Computing Journal, 2020, 97(A): 106796.
    [11]
    张宁, 李彩虹, 郭娜, 等. 基于CM-Q学习的自主移动机器人局部路径规划[J]. 山东理工大学学报(自然科学版), 2020, 34(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGC202004007.htm

    ZHANG Ning, LI Caihong, GUO Na, et al. Local path planning of autonomous mobile robot based on CM-Q learning[J]. Journal of Shandong University of Technology (Natural Science), 2020, 34(4): 37-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDGC202004007.htm
    [12]
    张福海, 李宁, 袁儒鹏, 等. 基于强化学习的机器人路径规划算法[J]. 华中科技大学学报(自然科学版), 2018, 46(12): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201812012.htm

    ZHANG Fuhai, LI Ning, YUAN Rupeng, et al. Robot path planning algorithm based on reinforcement learning[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(12): 65-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201812012.htm
    [13]
    王沐晨, 李立州, 张珺, 等. 基于卷积神经网络气动力降阶模型的翼型优化方法[J]. 应用数学和力学, 2022, 43(1): 77-83. doi: 10.21656/1000-0887.420137

    WANG Muchen, LI Lizhou, ZHANG Jun, et al. An airfoil optimization method based on the convolutional neural network aerodynamic reduced order model[J]. Applied Mathematics and Mechanics, 2022, 43(1): 77-83. (in Chinese) doi: 10.21656/1000-0887.420137
    [14]
    高普阳, 赵子桐, 杨扬. 基于卷积神经网络模型数值求解双曲型偏微分方程的研究[J]. 应用数学和力学, 2021, 42(9): 932-947. doi: 10.21656/1000-0887.420050

    GAO Puyang, ZHAO Zitong, YANG Yang. Study on numerical solutions to hyperbolic partial differential equations based on the convolutional neural network model[J]. Applied Mathematics and Mechanics, 2021, 42(9): 932-947. (in Chinese) doi: 10.21656/1000-0887.420050
    [15]
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[Z/OL]. 2013[2022-03-07]. https://arxiv.org/abs/1312.5602.
    [16]
    董永峰, 杨琛, 董瑶, 等. 基于改进的DQN机器人路径规划[J]. 计算机工程与设计, 2021, 42(2): 552-558. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ202102038.htm

    DONG Yongfeng, YANG Chen, DONG Yao, et al. Robot path planning based on improved DQN[J]. Computer Engineering and Design, 2021, 42(2): 552-558. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ202102038.htm
    [17]
    姜兰. 基于强化学习的智能小车路径规划[D]. 硕士学位论文. 杭州: 浙江理工大学, 2019.

    JIANG Lan. Intelligent car path planning based on reinforcement learning[D]. Master Thesis. Hangzhou: Zhejiang Sci-Tech University, 2019. (in Chinese)
    [18]
    丁志强. 基于Q学习算法的快速避障路径规划方法研究[D]. 硕士学位论文. 大连: 大连理工大学, 2021.

    DING Zhiqiang. Research on fast obstacle avoidance path planning method based on Q-learning alorithm[D]. Master Thesis. Dalian: Dalian University of Technology, 2021. (in Chinese)
    [19]
    FORTUNATO M, AZAR M G, PIOT B, et al. Noisy networks for exploration[Z/OL]. 2018[2022-03-07]. https://arxiv.org/abs/1706.10295.pdf.
    [20]
    胡刚. 基于强化学习的无地图搜索导航[D]. 硕士学位论文. 哈尔滨: 哈尔滨工业大学, 2019.

    HU Gang. Mapless exploration navigation based on reinforcement learning[D]. Master Thesis. Harbin: Harbin Industrial University, 2019. (in Chinese)
    [21]
    王健, 赵亚川, 赵忠英, 等. 基于Q(λ)-learning的移动机器人路径规划改进探索方法[J]. 自动化与表, 2019, 34(11): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHY201911013.htm

    WANG Jian, ZHAO Yachuan, ZHAO Zhongying, et al. Improved exploration method for mobile robot path planning based on Q(λ)-learning[J]. Automation and Instrument, 2019, 34(11): 39-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHY201911013.htm
    [22]
    吴夏铭. 基于深度强化学习的路径规划算法研究[D]. 硕士学位论文. 长春: 长春理工大学, 2020.

    WU Xiaming. Research on path planning algorithm based on deep reinforcement learning[D]. Master Thesis. Changchun: Changchun University of Science and Technology, 2020. (in Chinese)
    [23]
    吴俊塔. 基于集成的多深度确定性策略梯度的无人驾驶策略研究[D]. 硕士学位论文. 深圳: 中国科学院深圳先进技术研究院, 2019.

    WU Junta. Research of unmanned driving policy based on aggregated multiple deterministic policy gradient[D]. Master Thesis. Shenzhen: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 2019. (in Chinese)
    [24]
    于乃功, 王琛, 默凡凡, 等. 基于Q学习算法和遗传算法的动态环境路径规划[J]. 北京工业大学学报, 2017, 43(7): 1009-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201707006.htm

    YU Naigong, WANG Chen, MO Fanfan, et al. Dynamic environment path planning based on Q-learning algorithm and genetic algorithm[J]. Journal of Beijing University of Technology, 2017, 43(7): 1009-1016. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201707006.htm
    [25]
    周翼, 陈渤. 一种改进dueling网络的机器人避障方法[J]. 西安电子科技大学学报, 2019, 46(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201901010.htm

    ZHOU Yi, CHEN Bo. Method for obstacle avoidance based on improvement dueling Networks[J]. Journal of Xidian University, 2019, 46(1): 46-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201901010.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (452) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return