Volume 44 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
GONG Xuebei, ZHAO Weidong, GUO Dongmei. Thermal Buckling Analysis of FGM Sandwich Circular Plates Under Transverse Nonuniform Temperature Field Actions[J]. Applied Mathematics and Mechanics, 2023, 44(4): 419-430. doi: 10.21656/1000-0887.430094
Citation: GONG Xuebei, ZHAO Weidong, GUO Dongmei. Thermal Buckling Analysis of FGM Sandwich Circular Plates Under Transverse Nonuniform Temperature Field Actions[J]. Applied Mathematics and Mechanics, 2023, 44(4): 419-430. doi: 10.21656/1000-0887.430094

Thermal Buckling Analysis of FGM Sandwich Circular Plates Under Transverse Nonuniform Temperature Field Actions

doi: 10.21656/1000-0887.430094
  • Received Date: 2022-03-21
  • Rev Recd Date: 2022-05-05
  • Publish Date: 2023-04-01
  • Based on the von Kármán geometric nonlinear plate theory, the displacement-type geometric nonlinear governing equations for FGM sandwich circular plates under transverse nonlinear temperature field actions were derived. With the immovable clamped boundary condition, the analytical formula for dimensional critical buckling temperature differences of the system was obtained from the solution of the linear eigenvalue problem. Moreover, the 2-point boundary value problem of ordinary differential equations was solved with the shooting method. The effects of geometric parameters, constituent material properties, gradient indexes, temperature field parameters and layer-thickness ratios on the critical buckling temperature differences, the thermal postbuckling equilibrium paths, and the buckling equilibrium configurations of FGM sandwich circular plates, were investigated. The results show that, with the increases of the thickness-radius ratio, the relative thickness of the FGM layer and the gradient index, the FGM sandwich circular plate's critical buckling temperature difference will increase monotonically. Given a fixed radius and a fixed total thickness, the postbuckling deformation of the FGM sandwich circular plate will decrease significantly with the relative thickness of the FGM layer.
  • loading
  • [1]
    NAJAFIZADEH M M, ESLAMI M R. First-order-theory-based thermoelastic stability of functionally graded material circular plates[J]. AIAA Journal, 2012, 40(7): 1444-1450.
    REDDY J N, CHIN C D. Thermomechanical analysis of functionally graded cylinders and plates[J]. Journal of Thermal Stresses, 1998, 21(6): 593-626. doi: 10.1080/01495739808956165
    SHEN H S. Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments[J]. International Journal of Mechanical Sciences, 2002, 44(3): 561-584. doi: 10.1016/S0020-7403(01)00103-5
    VAN DO V N, CHANG K H, LEE C H. Post-buckling analysis of FGM plates under in-plane mechanical compressive loading by using a mesh-free approximation[J]. Archive of Applied Mechanics, 2019, 89(7): 1421-1446. doi: 10.1007/s00419-019-01512-5
    MA L S, WANG T J. Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loading[J]. International Journal of Solids and Structures, 2003, 40(13/14): 3311-3330.
    ZHANG D G, ZHOU H M. Mechanical and thermal post-buckling analysis of FGM rectangular plates with various supported boundaries resting on nonlinear elastic foundations[J]. Thin-Walled Structures, 2015, 89: 142-151.
    LEE W H, HAN S C, PARK W T. A refined higher order shear and normal deformation theory for E-, P-, and S-FGM plates on Pasternak elastic foundation[J]. Composite Structures, 2015, 122: 330-342. doi: 10.1016/j.compstruct.2014.11.047
    陈明飞, 刘坤鹏, 靳国永, 等. 面内功能梯度三角形板等几何面内振动分析[J]. 应用数学和力学, 2020, 41(2): 156-170. doi: 10.21656/1000-0887.400171

    CHEN Mingfei, LIU Kunpeng, JIN Guoyong, et al. Isogeometric in-plane vibration analysis of functionally graded triangular plates[J]. Applied Mathematics and Mechanics, 2020, 41(2): 156-170. (in Chinese) doi: 10.21656/1000-0887.400171
    SHEN H S, LI S R. Postbuckling of sandwich plates with FGM face sheets and temperature-dependent properties[J]. Composites (Part B): Engineering, 2008, 39(2): 332-344. doi: 10.1016/j.compositesb.2007.01.004
    ZENKOUR A M, SOBHY M. Thermal buckling of various types of FGM sandwich plates[J]. Composite Structures, 2010, 93(1): 93-102. doi: 10.1016/j.compstruct.2010.06.012
    WANG Z X, SHEN H S. Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations[J]. Composite Structures, 2011, 93(10): 2521-2532. doi: 10.1016/j.compstruct.2011.04.014
    ALIBEIGLOO A. Thermo elasticity solution of sandwich circular plate with functionally graded core using generalized differential quadrature method[J]. Composite Structures, 2016, 136: 229-240. doi: 10.1016/j.compstruct.2015.10.012
    MAHI A, BEDIA E A A, TOUNSI A. A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates[J]. Applied Mathematical Modelling, 2015, 39(9): 2489-2508. doi: 10.1016/j.apm.2014.10.045
    LI D, DENG Z, XIAO H, et al. Bending analysis of sandwich plates with different face sheet materials and functionally graded soft core[J]. Thin-Walled Structures, 2018, 122: 8-16. doi: 10.1016/j.tws.2017.09.033
    VAN DO V N, LEE C H. Numerical investigation on post-buckling behavior of FGM sandwich plates subjected to in-plane mechanical compression[J]. Ocean Engineering, 2018, 170: 20-42. doi: 10.1016/j.oceaneng.2018.10.007
    ZHAO W. Nonlinear axisymmetric thermomechanical response of FGM circular plates[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(7): 3-10.
    HUANG C L, SANDMAN B E. Large amplitude vibrations of a rigidly clamped circular plate[J]. International Journal of Non-Linear Mechanics, 1971, 6(4): 451-468. doi: 10.1016/0020-7462(71)90043-6
    LI S R, ZHANG J H, ZHAO Y G. Nonlinear thermomechanical post-buckling of circular FGM plate with geometric imperfection[J]. Thin-Walled Structures, 2007, 45(5): 528-536. doi: 10.1016/j.tws.2007.04.002
    VAN DO V N, LEE C H. Nonlinear thermal buckling analyses of functionally graded circular plates using higher-order shear deformation theory with a new transverse shear function and an enhanced mesh-free method[J]. Acta Mechanica, 2018, 229: 3787-3811. doi: 10.1007/s00707-018-2190-7
    REDDY J N, WANG C M, KITIPORNCHAI S. Axisymmetric bending of functionally graded circular and annular plates[J]. European Journal of Mechanics A: Solids, 1999, 18(2): 185-199. doi: 10.1016/S0997-7538(99)80011-4
    王雪, 赵伟东. 功能梯度梁在热-机械荷载作用下的几何非线性分析[J]. 应用数学和力学, 2019, 40(5): 508-517. doi: 10.21656/1000-0887.390201

    WANG Xue, ZHAO Weidong. Geometrically nonlinear analysis of functionally graded beam under thermomechanical loading[J]. Applied Mathematics and Mechanics, 2019, 40(5): 508-517. (in Chinese) doi: 10.21656/1000-0887.390201
    李世荣, 苏厚德, 程昌钧. 热环境中粘贴压电层功能梯度材料梁的自由振动[J]. 应用数学和力学, 2009, 30(8): 907-918. doi: 10.3879/j.issn.1000-0887.2009.08.003

    LI Shirong, SU Houde, CHENG Changjun. Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment[J]. Applied Mathematics and Mechanics, 2009, 30(8): 907-918. (in Chinese) doi: 10.3879/j.issn.1000-0887.2009.08.003
    LIS R, BATRA R C, MA L S. Vibration of thermally post-buckled orthotropic circular plate[J]. Journal of Thermal Stresses, 2007, 30(1): 43-57. doi: 10.1080/01495730600897161
    NAJAFIZADEH M M, HEDAYATI B. Refined theory for thermoelastic stability of functionally graded circular plates[J]. Journal of Thermal Stresses, 2004, 27(9): 857-880. doi: 10.1080/01495730490486532
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (72) PDF downloads(33) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint